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Abstract

This solver uses the biconjugate gradient stabilized method and the inexact LU decomposition

to numerically solve the linearized PB equation on a Cartesian 3D-grid. This version requires the

shifted dielectric and the ion accessibility coe�cient (kappa function) maps as generated by the

APBS code as well as the corresponding pqr �le generated by the pdb2pqr code. It uses standard

three-linear splines (spl0) to spread the charge density along the nearest grid points if needed.

It is able to solve the linearized PB eq with either Dirichlet, Periodic, Mixed or Focus boundary

conditions. In the later case, this code solves the PB equation in a large (low resolution) domain

and the resulting electrostatic potential solution is subsequently used to evaluate the Dirichlet

boundary condition to solve the PB equation in a (higher resolution) sub-domain region. The

resulting electrostatic potential and charge maps for both the coarse and target grids are saved in

dx format in di�erent folders. This version includes the option to calculate the energy for point-

like charge systems. For visualization purpose, this code also generates two �les (.�g and .ti�)

corresponding to the graphical representation of the electrostatic potential surface. This version

was used to solve most of models provided by the APBS package in the Examples section. For the

Dirichlet Boundary Condition, this version basically provides the same results than the previous

one. The main di�erence is that the user doesn't have to edit the source �les in this version but only

have to provide the target input-�le name and the corresponding full path as the only argument

of the (new) Matlab function MAPBS (x). In addition, we developed two useful GUI applications,

named MATLAB_APBS.m and comparison_pot.m, which provide an easy and e�cient way to

generate the Matlab input �les and to run MAPBS(x) without using text editors. The former GUI

helps the user to generate the proper Matlab input �les using just a browser to search the required

information on your computer. This would avoid errors in generating input �les and make the

user feels more comfortable using this code. Once the input �les was generated by the GUI, the

user may run the MAPBS code by simply clicking a push button. The other GUI helps the user

to perform the comparison between MAPBS and APBS for reaction �eld potentials as well as for

solvated or reference states. It brings basically the same features than the aforementioned GUI.

Note: it wasn't tested on periodic boundary condition yet.
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Description

This code is based on Michel Holst's thesis and Nathan Baker's APBS approach. The

box-method is used to discretize the following (linearized) PB equation

−∇. (ε (r)∇u (r)) + κ̄ (r)2 u (r) = magic
N∑

i=1

ziδ (r− ri) (1)

where u (r) = ecΦ (r) /KBT and magic = 4πe2c/KBT. For a diagonal dielectric tensor,

the resulting discretized linear PB equations at the nodes uijk = u (xi, yj, zk) for 1 ≤ i ≤ Nx,

1 ≤ j ≤ Ny and 1 ≤ k ≤ Nz reads[
εxi−1/2,j,k

(hj−1 + hj) (hk−1 + hk)

4hi−1

+ εxi+1/2,j,k

(hj−1 + hj) (hk−1 + hk)

4hi

+

εyi,j−1/2,k

(hi−1 + hi) (hk−1 + hk)

4hj−1

+ εyi,j+1/2,k

(hi−1 + hi) (hk−1 + hk)

4hj

+

εki,j,k−1/2

(hi−1 + hi) (hj−1 + hj)

4hk−1

+ εki,j,k+1/2

(hi−1 + hi) (hj−1 + hj)

4hk

+

κijk
(hi−1 + hi) (hj−1 + hj) (hk−1 + hk)

8

]
uijk+

[
−εxi−1/2,j,k

(hj−1 + hj) (hk−1 + hk)

4hi−1

]
ui−1jk +

[
−εxi+1/2,j,k

(hj−1 + hj) (hk−1 + hk)

4hi

]
ui+1jk+

[
−εyi,j−1/2,k

(hi−1 + hi) (hk−1 + hk)

4hj−1

]
uij−1k +

[
−εyi,j+1/2,k

(hi−1 + hi) (hk−1 + hk)

4hj

]
uij+1k+

[
−εki,j,k−1/2

(hi−1 + hi) (hj−1 + hj)

4hk−1

]
uijk−1 +

[
−εki,j,k+1/2

(hi−1 + hi) (hj−1 + hj)

4hk

]
uijk+1 =

magic
(hi−1 + hi) (hj−1 + hj) (hk−1 + hk)

8
fijk (2)

in which

hi = xi+1 − xi, hj = yj+1 − yj hk = zk+1 − zk
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The delta functions appearing in the right hand side of the starting equations are ap-

proximated with linear B-splines (spl0) which spread the point like charge along the nearest

neighborhood. The resulting fijk represent the smearing of the point charges along the grid

points.

For more details, including used unit system, please refer to the Michel Holst's thesis and

the APBS user guide online. To visualize more clearly the problem, let's explicitly write the

�rst equations for a cubic grid of 5x5x5 containing general coe�cients

a222u222 + a122u122 + a322u322 + a212u212 + a232u232 + a221u221 + a223u223 = f222

a322u322 + a222u222 + a422u422 + a312u312 + a332u332 + a321u321 + a323u323 = f322

a422u422 + a122u122 + a322u322 + a212u212 + a232u232 + a221u221 + a223u223 = f422

a232u232 + a132u132 + a332u332 + a222u222 + a242u242 + a231u231 + a233u233 = f232

. . .

in which the nodes are arranged using the natural ordering

U = [u111, u211, .., uNx11,u121, .., u221, u321, .., uNx21..., uNxNyNz ]T

Note that the prescribed values of nodes u1jk, uNx,j,k, ui,1,k, ui,Ny ,k, uij1 and uijNz along the

faces of the box coming from the Dirichlet boundary conditions will have their corresponding

elements removed in such a way that only equations for the interior nodes remain. In other

words, we will only consider the following set of unknown nodes

U = [u222, u322, .., uNx−1,22,u232, .., u332, u432, .., uNx−2,32..., uNx−1,Ny−1,Nz−1]
T

in such a way that the previous equations become

a222u222 + a322u322 + a232u232 + a223u223 = f222 − a122u122 − a212u212 − a221u221 ≡ b222

a322u322 + a222u222 + a422u422 + a332u332 + a323u323 = f322 − a312u312 − a321u321 ≡ b322
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a422u422 + a322u322 + a232u232 + a223u223 = f422 − a122u122 − a212u212 − a221u221 ≡ b422

a232u232 + a332u332 + a222u222 + a242u242 + a233u233 = f232 − a132u132 − a231u231 ≡ b232

in which the boundary u′s are conveniently brought to the right-hand-side of the equa-

tions. The resulting left-hand side equations can be written in compact form in term of

matrix vector product as follows

Au = b

in which

u (p) = uijk, b (p) = bijk, p = (k − 2)(Nx − 2)(Ny − 2) + (j − 2)(Nx − 2) + i− 1

i = 2, .., Nx − 2, j = 2, .., Ny − 2, k = 2, .., Nz − 2

and A is a (seven banded block tri-diagonal form) (Nx − 2)(Ny − 2)(Nz − 2) by (Nx −

2)(Ny − 2)(Nz − 2) squared symmetric positive de�nite matrix containing the following

nonzero elements (see �gure 1):

• The main diagonal elements

d0(p) =

[
εxi−1/2,j,k

(hj−1 + hj) (hk−1 + hk)

4hi−1

+ εxi+1/2,j,k

(hj−1 + hj) (hk−1 + hk)

4hi

+

εyi,j−1/2,k

(hi−1 + hi) (hk−1 + hk)

4hj−1

+ εyi,j+1/2,k

(hi−1 + hi) (hk−1 + hk)

4hj

+

εki,j,k−1/2

(hi−1 + hi) (hj−1 + hj)

4hk−1

+ εki,j,k+1/2

(hi−1 + hi) (hj−1 + hj)

4hk

+

κijk
(hi−1 + hi) (hj−1 + hj) (hk−1 + hk)

8

]
(3)

• The Next upper band diagonal, which is shifted in one column to the left from the

�rst column, contains the following elements
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Figure 1: A Matrix representation

[
d1(p) = −εxi+1/2,j,k

(hj−1 + hj) (hk−1 + hk)

4hi

]
(4)

• The second upper band diagonal which is shifted Nx−2 columns from the �rst column

d2(p) =

[
−εyi,j+1/2,k

(hi−1 + hi) (hk−1 + hk)

4hj

]
(5)

• The third upper band diagonal which is shifted (Nx − 2)(Ny − 2) columns from the

�rst column

d3(p) =

[
−εki,j,k+1/2

(hi−1 + hi) (hj−1 + hj)

4hk

]
(6)
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The remaining elements of the upper triangular squared matrix A are set equal to zero.

By symmetry we obtain the lower triagonal elements of the matrix A. Because the matrix

A is sparse and large, we can implement e�cient methods that optimally solve the linear

system for U. Speci�cally, we use the biconjugate gradient stabilized method combined with

the inexact LU decomposition of the matrix A. Having the numerical values for the nodes

in the interior of the box, we �nally add the previously removed prescribed values along the

six faces to get the solution over the complete set of grid points.

Dirichlet Boundary Condition

The values of nodes u1jk, uNx,j,k, ui,1,k, ui,Ny ,k, uij1 and uijNz along the six faces of the box,

including the edges and the corner nodes (1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny and 1 ≤ k ≤ Nz), are set

to the values prescribed by a Debye-Hückel model for a multiple, non-interacting spheres

with a point charges. The sphere radii are set to the atomic radii of the biomolecule and

the sphere charges are set to the total charge of the protein.

Focus Boundary Condition

Our code uses linear interpolation to obtain the value of the potential at the six faces of

the target box from the value of the potential obtained at larger domain.

Periodic Boundary Condition

We have to add now three extra diagonals coming from the periodic boundary conditions

to the Matrix A previously obtained for the Dirichlet boundary condition. Speci�cally, the

nonzero values for those diagonals are given by the following expressions

• An extra upper band diagonal which is shifted Nx − 3 columns from the �rst column

d4(p) =

[
−εxNx+1/2,j,k

(hj−1 + hj) (hk−1 + hk)

4hi

]
, p = (k−2)(Nx−2)(Ny−2)+(j−2)(Nx−2)+1

(7)

for 2 ≤ j ≤ Ny − 1 and 2 ≤ k ≤ Nz − 1,

• An extra upper band diagonal which is shifted (Nx−2)(Ny−3) columns from the �rst

column
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d5(p) =

[
−εyi,Ny+1/2,k

(hi−1 + hi) (hk−1 + hk)

4hj

]
, p = (k− 2)(Nx − 2)(Ny − 2) + i− 1 (8)

for 2 ≤ i ≤ Nx − 1 and 2 ≤ k ≤ Nz − 1,

• An extra upper band diagonal which is shifted (Nx−2)(Ny−2)(Nz−3) columns from

the �rst column

d6(p) =

[
−εki,j,Nz+1/2

(hi−1 + hi) (hj−1 + hj)

4hk

]
, p = (j − 2)(Nx − 2) + i− 1 (9)

for 2 ≤ i ≤ Nx − 1 and 2 ≤ j ≤ Ny − 1.

Since now there are no terms brought from the right side to the left one in the linear

equation system, we have bijk = fijk. By symmetry, we obtain the extra three lower diagonals

of the matrix A.

The values of nodes u1jk, uNx,j,k, ui,1,k, ui,Ny ,k, uij1 and uijNz along the six faces of the box

explicitly involved into the linear equation system are set equal to the values of the interior

nodes as follows

u1jk = uNx−1jk, uNxjk = u2jk, ui1k = uiNy−1k (10)

uiNyk = ui2k, uij1 = uijNz−1, uijNz = uij2.

for 2 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1 and 2 ≤ k ≤ Nz − 1.

On the other hand, the nodes along the edges are not explicitly included into the linear

equation system and they may be computed from the continuity requirement on the potential

solution rather than from the values prescribed by a Debye-Hückel model for a multiple, non-

interacting spheres with a point charges. Speci�cally, we estimate

u11k = (u12k + u21k) /2, u1j1 = (u1j2 + u2j1) /2

ui11 = (ui12 + ui21) /2, u1Nyk =
(
u1Ny−1k + u2Nyk

)
/2 (11)

u1jNz = (u1jNz−1 + u2jNz) /2, ui1Nz = (ui1Nz−1 + ui2Nz) /2

uNx1k = (uNx−11k + uNx2k) /2, uNxj1 = (uNx−1j1 + uNxj2) /2
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uiNyNz =
(
uiNy−1Nz + uiNyNz−1

)
/2, uNxjNz = (uNx−1jNz + uNxjNz−1) /2

uiNy1 =
(
uiNy−11 + uiNy2

)
/2, uNxNyk =

(
uNx−1Nyk + uNxNy−1k

)
/2

for 2 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1 and 2 ≤ k ≤ Nz − 1.

The nodes at the corners u111, uNx,1,1, u1,1,Nz , u1,Ny ,1, uNxNyNz , uNx1Nz , u1NyNz , and uNxNy1

don't appear into the above equations. They may be computed from the values obtained

previously as follows

u1Ny1 =
(
u2Ny1 + u1Ny−11 + u1Ny2

)
/3, u11Nz = (u21Nz + u12Nz + u11Nz) /3,

uNx11 = (uNx−111 + uNx21 + uNx12) /3, uNxNy1 =
(
uNx−1Ny1 + uNxNy−11 + uNxNy2

)
/3

u1NxNz =
(
u2NxNz + u1Ny−1Nz + u1NyNz−1

)
/3, uNx1Nz = (uNx−11Nz + uNx2Nz + uNx1Nz−1) /3

(12)

u111 = (u211 + u121 + u112) /3, uNxNyNz =
(
uNx−1NyNz + uNxNy−1Nz + uNxNyNz−1

)
/3

Mixed Boundary Conditions

There are many biological systems that exhibit periodic boundary conditions over the xy

plane and non periodic (Dirichlet) boundary condition along the z direction. Consequently,

a mixed approach is required. In Regarding the construction of the matrix A, we only have

to add two diagonals to the A matrix obtained for Dirichlet boundary condition, e.g. d4 and

d5. Secondly, we only have to include into the expression for the coe�cients bijk those terms

aijkuijk which depend only on the shifted dielectric coe�cients along the z-direction. The

other terms are included into the matrix A through the diagonals d4and d5.

The values of the nodes at the top and button faces (xy planes for k = 1 and k = Nz)

of the box may be obtained from the values of the nodes uij1 and uijNz for 1 ≤ i ≤ Nx and

1 ≤ j ≤ Ny provided by the Hucke Debye model used in the Dirichlet boundary conditions.

Note that this includes the values of the nodes along the edges as well as those at the corners.
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On the other hand, the values of the nodes over the x and y faces are obtained from the

periodicity symmetry. After solving the linear equation system, we obtain the values for the

following interior nodes uNx−1jk, u2jk, uiNy−1k, and ui2k for 2 ≤ i ≤ Nx − 1, 2 ≤ j ≤ Ny − 1

and 2 ≤ k ≤ Nz − 1 which can be used to calculate the nodes over the x and y faces as

follows

u1jk = uNx−1jk, uNxjk = u2jk, ui1k = uiNy−1k, uiNyk = ui2k

Note that in this case we don't obtain the values of the nodes at the 4 edges de�ned

along the z axis. We may compute those values from the interior nodes using the continuity

criteria as follows

u11k = (u12k + u21k) /2, u1Nyk =
(
u1Ny−1k + u2Nyk

)
/2

uNx1k = (uNx−11k + uNx2k) /2, uNxNyk =
(
uNx−1Nyk + uNxNy−1k

)
/2

for 2 ≤ k ≤ Nz − 1.
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Computational algorithm for Dirichlet boundary conditions

1. The code reads the (target) input �le .inm to get the APBS input �les (shifted dielectric

coe�cients, kappa function and pqr data �le) as well as the number of (target) grid

points, the box Lengths, temperature, and bulk properties (ionic strength and solvent

dielectric coe�cient) among other parameters.

2. The center of the grid is evaluated from the corresponding pqr �le.

3. By using linear B-splines, the charge density is discretized to get fijk for i =

1, .., Nx, j = 1, .., Ny, k = 1, .., Nz. The Dirichlet boundary condition along the

six faces of the box u1jk, uNx,j,k, ui,1,k, ui,Ny ,k, uij1 and uijNz are calculated by using

the temperature, the value of the bulk dielectric coe�cient (usually water) and ionic

strength.

4. The nonzero components of the matrix A, e.g., the diagonal elements

d0(p), d1(p), d2(p), and d3(p), for p = (k− 2)(Nx− 2)(Ny − 2) + (j− 2)(Nx− 2) + i− 1

and i = 2, .., Nx − 1, j = 2, .., Ny − 1, k = 2, .., Nz − 1 are evaluated by using the

expressions (3), (4),(5), and (6). The values for the shifted dielectric coe�cients and

kappa function elements are obtained from the APBS input �les. The values of the

mesh size hi, hj and hk are obtained from the number of grid points and the Length

of the box. Next, the sparse upper triangular matrix A is constructed by �lling with

zeros the remaining elements of the matrix A. Next, the lower triangular elements of

the matrix A are obtained by using the following symmetry property Apq = Aqp for

q = 1, .., (Nx − 2)(Ny − 2)(Nz − 2) and p = q, .., (Nx − 2)(Ny − 2)(Nz − 2).

5. The elements of bijk are evaluated by using the values obtained for the discretized

charge density fijk and the values of the Dirichlet boundary elements multiplied by the

appropriate shifted dielectric coe�cient values. The natural ordering p = (k−2)(Nx−

2)(Ny−2)+(j−2)(Nx−2)+i−1 and i = 2, .., Nx−1, j = 2, .., Ny−1, k = 2, .., Nz−1

is used to construct the corresponding vector b(p) (one index) from the data array

structure (three indices) bijk.

6. The inexact LU decomposition of the matrix A is performed. The default tolerance

value is set equal to 0.25 which provides a fast evaluation of the matrices L and U .
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7. The resulting L and U matrices, the matrix A and the vector b are used to approxi-

mately solve Au = b for the vector u using the biconjugate gradient stabilized method.

The default accuracy is set equal to 10^-9 and the maximum number of iteration equal

to 800.

8. The natural ordering relationship is used to convert the resulting vector u(p) to data

array structure to get the numerical solution for uijk for i = 2, .., Nx−1, j = 2, .., Ny−

1, k = 2, .., Nz − 1.

9. Finally the previously removed values of the nodes at the faces of the box are used to

obtain the solution for the nodes uijk over the complete set of grid points, namely for

i = 1, .., Nx, j = 1, .., Ny, k = 1, .., Nz.

10. The electrostatic potential uijk and the charge fijk maps are saved in dx format �les.

11. If required, it calculates the energy using linear interpolation to evaluate the solution

obtained in the grid at the exact location of the point-like charges.

12. The electrostatic potential surface uij(Nz+1)/2 is saved in ti� and �g format �les for

visualization purpose.

Computational algorithm for Periodic boundary conditions

1. The code reads the (target) input �le .inm to get the APBS input �les (shifted dielectric

coe�cients, kappa function and pqr data �le) as well as the number of (target) grid

points, the box Lengths, temperature, and bulk properties (ionic strength and solvent

dielectric coe�cient) among other parameters.

2. The center of the grid is evaluated from the corresponding pqr �le.

3. By using linear B-splines, the charge density is discretized to get fijk for i =

1, .., Nx, j = 1, .., Ny, k = 1, .., Nz. The Dirichlet boundary condition along the

six faces of the box u1jk, uNx,j,k, ui,1,k, ui,Ny ,k, uij1 and uijNz are calculated by using

the temperature, the value of the bulk dielectric coe�cient (usually water) and ionic

strength.
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4. The nonzero components of the matrix A, e.g., the diagonal elements

d0(p), d1(p), d2(p), and d3(p), for p = (k− 2)(Nx− 2)(Ny − 2) + (j− 2)(Nx− 2) + i− 1

and i = 2, .., Nx − 1, j = 2, .., Ny − 1, k = 2, .., Nz − 1 are evaluated by using

the expressions (3), (4),(5), and (6). The additional diagonals coming from the pe-

riodicity symmetry are evaluated by using expressions 7, 8, and 9. The values for

the shifted dielectric coe�cients and kappa function elements are obtained from the

APBS input �les. The values of the mesh size hi, hj and hk are obtained from the

number of grid points and the Length of the box. Next, the sparse upper triangular

matrix A is constructed by �lling with zeros the remaining elements of the matrix

A. Next, the lower triangular elements of the matrix A are obtained by using the

following symmetry property Apq = Aqp for q = 1, .., (Nx − 2)(Ny − 2)(Nz − 2) and

p = q, .., (Nx − 2)(Ny − 2)(Nz − 2).

5. The elements of bijk are evaluated by using the values obtained for the discretized

charge density fijk. The natural ordering p = (k− 2)(Nx − 2)(Ny − 2) + (j − 2)(Nx −

2)+ i−1 and i = 2, .., Nx−1, j = 2, .., Ny−1, k = 2, .., Nz−1 is used to construct

the corresponding vector b(p) (one index) from the data array structure (three indices)

bijk.

6. The inexact LU decomposition of the matrix A is performed. The default tolerance

value is set equal to 0.25 which provides a fast evaluation of the matrices L and U .

7. The resulting L and U matrices, the matrix A and the vector b are used to approxi-

mately solve Au = b for the vector u using the biconjugate gradient stabilized method.

The default accuracy is set equal to 10^-9 and the maximum number of iteration equal

to 800.

8. The natural ordering relationship is used to convert the resulting vector u(p) to data

array structure to get the numerical solution for uijk for i = 2, .., Nx−1, j = 2, .., Ny−

1, k = 2, .., Nz − 1.

9. Finally the previously removed values of the nodes at the faces of the box are used

to obtain the solution for the nodes uijk over the complete set of grid points, namely

for i = 1, .., Nx, j = 1, .., Ny, k = 1, .., Nz. Speci�cally, the values of the nodes
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over the faces, edges and corners are evaluated by using the expressions 10, 11, and

12 respectively.

10. The electrostatic potential uijk and the charge fijk maps are saved in dx format �les.

11. If required, it calculates the energy using linear interpolation to evaluate the solution

obtained in the grid at the exact location of the point-like charges.

12. The electrostatic potential surface uij(Nz+1)/2 is saved in ti� and �g format �les for

visualization purpose.

Computational algorithm for Focus boundary conditions

The algorithm reads the target input �le �nding that the boundary condition line says

�focusname.inm� instead of �sdh�. Then the Matlab code automatically �rst reads that input

�le �focusname.inm� to solve the PB equation in the speci�ed coarse grid using Dirichlet

boundary condition as explained previously. It saves the resulting electrostatic potential

solution in a temporary dx formatted �le and then perform the following steps;

1. The code reads the (target) input �le .inm to get the APBS input �les (shifted dielectric

coe�cients, kappa function and pqr data �le) as well as the number of (target) grid

points, the box Lengths, temperature, and bulk properties (ionic strength and solvent

dielectric coe�cient) among other parameters.

2. The center of the grid is evaluated from the corresponding pqr �le.

3. By using linear B-splines, the charge density is discretized to get fijk for i =

1, .., Nx, j = 1, .., Ny, k = 1, .., Nz. The Dirichlet boundary condition along the

six faces of the target (smaller) box u1jk, uNx,j,k, ui,1,k, ui,Ny ,k, uij1 and uijNz are cal-

culated by using a three-linear interpolation for the electrostatic potential solution

obtained previously at larger box-sides (Focus boundary Condition).

4. The nonzero components of the matrix A, e.g., the diagonal elements

d0(p), d1(p), d2(p), and d3(p), for p = (k− 2)(Nx− 2)(Ny − 2) + (j− 2)(Nx− 2) + i− 1

and i = 2, .., Nx − 1, j = 2, .., Ny − 1, k = 2, .., Nz − 1 are evaluated by using the

expressions (3), (4),(5), and (6). The values for the shifted dielectric coe�cients and
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kappa function elements are obtained from the APBS input �les. The values of the

mesh size hi, hj and hk are obtained from the number of grid points and the Length

of the box. Next, the sparse upper triangular matrix A is constructed by �lling with

zeros the remaining elements of the matrix A. Next, the lower triangular elements of

the matrix A are obtained by using the following symmetry property Apq = Aqp for

q = 1, .., (Nx − 2)(Ny − 2)(Nz − 2) and p = q, .., (Nx − 2)(Ny − 2)(Nz − 2).

5. The elements of bijk are evaluated by using the values obtained for the discretized

charge density fijk and the values of the Dirichlet boundary elements multiplied by the

appropriate shifted dielectric coe�cient values. The natural ordering p = (k−2)(Nx−

2)(Ny−2)+(j−2)(Nx−2)+i−1 and i = 2, .., Nx−1, j = 2, .., Ny−1, k = 2, .., Nz−1

is used to construct the corresponding vector b(p) (one index) from the data array

structure (three indices) bijk.

6. The inexact LU decomposition of the matrix A is performed. The default tolerance

value is set equal to 0.25 which provides a fast evaluation of the matrices L and U .

7. The resulting L and U matrices, the matrix A and the vector b are used to approxi-

mately solve Au = b for the vector u using the biconjugate gradient stabilized method.

The default accuracy is set equal to 10^-9 and the maximum number of iteration equal

to 800.

8. The natural ordering relationship is used to convert the resulting vector u(p) to data

array structure to get the numerical solution for uijk for i = 2, .., Nx−1, j = 2, .., Ny−

1, k = 2, .., Nz − 1.

9. Finally the previously removed values of the nodes at the faces of the box are used to

obtain the solution for the nodes uijk over the complete set of grid points, namely for

i = 1, .., Nx, j = 1, .., Ny, k = 1, .., Nz.

10. The electrostatic potential uijk and the charge fijk maps are saved in dx format �les.

11. If required, it calculates the energy using linear interpolation to evaluate the solution

obtained in the grid at the exact location of the point-like charges.

12. The electrostatic potential surface uij(Nz+1)/2 is saved in ti� and �g format �les for

visualization purpose.
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Comment1: Note that in this case the user have to provide two inm.�les and the corre-

sponding dx and pqr �les for both the coarse and target grids.

Comments2: In this version the user have to provide two pqr �les, one representing the

molecule by which the PB eq is solved and, the second one to de�ne the center of the grid.

It may be the same than the �rst one, but in general, for complex systems they are not.

Comments3: Finally, the user have to provide both directories for the input and output

�les respectively. In this way the user doesn't have to edit the source �les at all. Just need

to provide the name of the input �le and the full path as the only argument in the Matlab

function MAPBS (x).

Input File structure

The .inm �le parsing is strict. Input must contain the value of these parameters in exactly

this order in a column:

dime

glen

T

bulk

bc

digpres

dielx_str

diely_str

dielz_str

kappa_str

pqr_str

pqr_cent_str

energy

in_name_str

name_str
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dime

This line is left to specify the number of grid points. The values for this keyword are:

nx ny nz

the (integer) number of grid points in the x-, y-, and z-directions, respectively.

glen

This line is left to specify the mesh domain lengths; this may be di�erent in each direction.

The values for this keyword are:

xlen ylen zlen

the (�oating point) grid lengths in the x-, y-, and z-directions (respectively) in Å.

T

This line is left to specify the temperature of the system in Kelvin. The value for this

keyword is:

T

bulk

This line is left to specify the bulk properties. The values for this keyword are:

I Solv-epsilon

where I is the ionic strength de�ned by I = 0.5
∑

i ciz
2
i where the dummy sum is over all

di�erent ionic species, zi and ciare the valence and ionic concentration in moles respectively.

The other parameter �Solv-epsilon� represents the value of the solvent dielectric coe�cient

(usually equal to 78.54 for water).

bc

This line is left to specify the boundary condition to be used to solve the linear PB

equation. The words for this keyword can be either

sdh
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if the user requires Dirichlet boundary condition,

periodic

if the user requires Periodic boundary condition,

mixed

if the user requires Mixed boundary condition,

or

focusname.inm

if the user requires focus boundary condition.

digpres

This line is left to specify the number of digits of precision in the residual error obtained

in the solution of the linear eq generated by the biconjugate gradient method. The value

for this keyword is:

N

where this number is usually set equal to 6.

dielx_str

This line is left to specify the name of the shifted x-component of the dielectric coe�cients

in dx format as generated by APBS. For instances

x�lename.dx

diely_str

This line is left to specify the name of the shifted y-component of the dielectric coe�cients

in dx format as generated by APBS. For instances

y�lename.dx

dielz_str

This line is left to specify the name of the shifted z-component of the dielectric coe�cients

in dx format as generated by APBS. For instances

18



z�lename.dx

kappa_str

This line is left to specify the name of the ionic accessibility coe�cients kappa in dx

format (.dx extension) as generated by APBS. For instances

kappa�lename.dx

pqr_str

This line is left to specify the name of the pqr �le (.pqr extension) generated by pdb2pqr

determining the target molecule by which the PB eq will be solved. For instances

moleculetarget.pqr

pqr_cent_str

This line is left to specify the name of the pqr �le (.pqr extension) generated by pdb2pqr

determining the molecule de�ning the center of grid. It may be the same than pqr_str if

there is only one molecule. In complex systems having more than one molecular species it

uses to de�ne one of them as the molecule reference. In such cases the center of grid would

be de�ned by the coordinates of such molecule for all the molecular species contained in the

complex system. For instances

moleculereference.pqr

In some cases the user prefers to de�ne the three coordinates (in A units) of the center

of grid explicitly, namely xcent ycent zcent, instead of calculating these coordinates from

the location of the atoms de�ned in an speci�c molecule pqr �le. Because this line only

reads pqr �le, the easy way to do this is by writing a pqr �le for only one atom having as

coordinates those de�ned by the center of grid. For instances, if the user want to de�ne the

center of grid at the origin, namely at 0 0 0, then the user should write a pqr �le like this

one

ATOM 1 I ION 1 0.000 0.000 0.000 1.00 1.00

or in general like this
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ATOM 1 I ION 1 xcent ycent zcent 1.00 1.00

energy

This line is left to specify the calculation of the energy. The words for this line can be

either

calceneryes

if the user requires the calculation of the energy, or any other word, for instances

calcenerno

if the user doesn't want to.

in_name_str

This line is left to specify the full path to the input �le directory containing all the dx

and pqr �les as well as focusname.inm if focus boundary condition is required. For instances

C:\User\myname\matlabworkspace\Input_Files

for Windows users or

/Users/myname/matlabworkspace/Input_Files

for Linux users.

name_str

This line is left to specify the full path to the output �le directory that will contain the

resulting dx, �g and jpg �les. For instances

C:\User\myname\matlabworkspace\systemname

for Windows users or

/Users/myname/matlabworkspace/systemname

for Linux users.

Input �le examples

Just one inm. �le is required if the user is not using focus boundary condition as you can

see in the following example:

20



%|�example solvated-born.inm �le using Dirichlet Boundary Condition�|

65 65 65

12 12 12

298.15

0.0 78.54

sdh

6

solvated-born-dielx.dx

solvated-born-diely.dx

solvated-born-dielz.dx

solvated-born-kappa.dx

born-ion.pqr

born-ion.pqr

calceneryes

C:\Users\Marce\Matlab_work_space\Input_Files

C:\Users\Marce\Matlab_work_space\born_model

%|����

Otherwise, two inm. �les are required if the user use the focus boundary condition as

you can see in the following example:

%|�example solvated-ligand.inm �le using focus boundary condition�|

97 97 97

24 24 24

298.15

0.0 78.54

focusname.inm

6

solvated-ligand-dielx.dx

target-solvated-ligand-diely.dx

target-solvated-ligand-dielz.dx

target-solvated-ligand-kappa.dx

bx6_7_lig_apbs.pqr

bx6_7_lig_apbs.pqr
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calcenerno

C:\Users\Marce\Matlab_work_space\Input_Files

C:\Users\Marce\Matlab_work_space\Target_ligand

%|������-

%|�example focusname.inm �le for the calculation of the elect pot in the coarse grid

97 97 97

70 70 70

298.15

0.0 78.54

sdh

6

coarse-ligand-dielx.dx

coarse-ligand-diely.dx

coarse-ligand-dielz.dx

coarse-ligand-kappa.dx

bx6_7_lig_apbs.pqr

bx6_7_bin_apbs.pqr

calcenerno

C:\Users\Marce\Matlab_work_space\Input_Files

C:\Users\Marce\Matlab_work_space\Coarse_ligand

%|�������|

GUI applications

Using MATLAB_APBS (this explanation is based on DOS platform but it can used on others)

We assume all the source �les are located in the same directory, includ-

ing MATLAB_APBS.m, MATLAB_APBS.�g, MAPBS.m. In our example, it is

C:\workspace\MATLAB_APBS\src. We also assume you saved all the input �les in the

same directory. In our example, it is C:\workspace\MATLAB_APBS\Input_Files.

There are several ways to run this GUI. The simplest one consists in making you current

directory the one in which the source �les are located by using the search bar on the top of
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the Matlab window. Then just type >> MATLAB_APBS and press Enter as it is shown

below

Then, the graphical interface will open in a new window as follows
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By reading the instructions on this window, you are able to �ll out the grid information

typing the number of grid and the box length. Then, you may go to the next panel and

click on the �rst box and press Enter as required. The following window will appear

By default, the browser will open in the current directory. You have to change it to the

folder in which you saved your input �les. In our case it is
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To help to �nd the proper �les there is a �lter which only shows �les having the right

extension. Just select the required �le and the press the �Open� button.

Repeat this procedure for each of the other boxes in the APBS and PDB2PQR panel.

Because we assume all of the input �les are located in the same directory, this GUI will

subsequently open the browser in same input �le directory to facilitate and make faster the

user �nds the required �les.

Next, you have either to select or create the output�le directory. This is similar to the

previous procedure.

Finally, you may �ll out the remaining information, namely the numerical solver set up

and thermodynamic parameters to yield something like this
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Now the user is ready to generate the Matlab input �le (input�le.inm) by clicking the

proper red push button. A warning message will appear in a new window asking the user to

check all the provided information. After the Matlab input �le is generated, there are two

options.

If the Dirichlet boundary condition is required, the user is able to run MAPBS by clicking

on the proper red push button. Then, the current GUI window will close and the MAPBS

will run on the Matlab command window.

Otherwise, if Focus boundary condition is required as shown in our example, the user will

have to subsequently provide the corresponding information about the coarse grid calculation

in a new window generating a second input �le (focusname.inm). Speci�cally, the following

window will open
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which is very similar to the previous one. You have to �ll out all the information as

explained for the target grid to yield something like this
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Now the user is ready to generate the second input �le (focusname.inm) by clicking the

proper red push button. Again, a warning message will alert the user to check all the

provided information. Finally, the user is able to run MAPBS by clicking on the proper red

push button. Then, the current GUI window will close and the MAPBS will run on the

Matlab command window.

For both cases, the resulting screen on the Matlab command window running the MAPBS

would look like this
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In our example, the resulting �les will be saved in the �outpu�les� subfolder located in

both the �Target_Grid� and �Coarse_Grid� directories. In the former, you will also �nd

the MATLAB_screen.io �le which contains all the information printed on the screen in the

Matlab command window during the execution of MAPBS.

Using comparison_pot

Let compare, for instances, the previously obtained coarse grain Matlab solution with

the one coming from APBS.

To use the comparison_pot GUI,and following the previous instructions, we have to type

>> comparison_pot in the Matlab command window and press Enter as it is shown below
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then, the graphical interface will open in a new window as follows
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It looks very similar to the MATLAB_APBS GUI. Following the instructions

on this window, you may �ll out each boxes as explained earlier. Because

we will compare solvated states, we only have to �ll out the �rst and third

boxes use the browser as explained earlier, leaving in blank the other two cor-

responding to the reference states. In our example, the APBS and the MAT-

LAB input �les are located in C:\workspace\MATLAB_APBS\Input_Files and

C:\workspace\MATLAB_APBS\Coarse_Grain\output�les directories, respectively. Fi-

nally, we have to either select or create the output�les directory to yield
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Now the user is ready to press the �run� red push button. The current GUI will close

and the 'mapbs_comparison.m' Matlab code will run on the Matlab command window.

The resulting �les will be saved in the subfolder �COMPARATIVE_ANALYSIS� within the

required output�les directory.
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