
DOCUMENTATION
FAUST & BELA

R.PANIS 2018 – For GRAME

Index
MANUAL...3

Using FAUST with BELA, manual...3
Faust2bela script..7
Script for copy of files into BELA...8
Installing BELA...9

The Driver on the host computer :..9
BELA – SD card install :..9

MEASURES...10
Latency measures...10
FAUST performance on BELA...14
Compilation options...16

DEMO FILES :...17
Synthesizers :...17

AdditiveSynth.dsp 78% CPU (6 voices, without FX)..17
FMSynth2.dsp 60% CPU (8 voices, with FX)...17
simpleSynth.dsp 59% CPU (8 voices, with FX)...18
WaveSynth.dsp 70% CPU (8 voices, with FX)...18

L'effect for the synthesizers :...19
simpleFX.dsp..19

Effects :..19
crossDelay2.dsp 28% CPU...19
FXChaine2.dsp 64% CPU..20
granulator.dsp 23% CPU..20
GrainGenerator.dsp 33% CPU..21
repeater.dsp 13% CPU...21

Some small FAUST functions :...21
Scanner :..21
WaveTable generator :..21
RS Latch :..22
counterUpReset :...22

MANUAL

Using FAUST with BELA, manual

1- FAUST program.
Go to the online editor : http://faust.grame.fr/editor/ and write the FAUST code that will have to
be inserted in the BELA.

To indicate that an analog input of the BELA must control a parameter, it is necessary to add in the
construction of the widget [BELA: ANALOG_'number'].
Example :
frequence = hslider("frequence[BELA: ANALOG_0]", 440, 20, 10000, 0.1);

(It's possible, for example, to check the result by compiling for a platform other than BELA).

Faust Editor web page, with export button

2- Export.
Once the FAUST program is complete and functional, choose Export.

2a- Select target : BELA.
2b- Choose Compilation option, according to the need of FAUST program:

– BELA
For a project that doesn't need MIDI.

– BELA + MIDI
For a project that needs MIDI control, but doesn't need the keyboard (it's not a synthesizer)

– BELA + number of voices, from 1 to 8. For a synthesizer, with the choice of the number of
polyphonic voices.

http://faust.grame.fr/editor/

The analog inputs of the BELA are always available. Similarly, all parameters are controllable by
OSC without additional operations.

2c- Click on EXPORT:

3- Download the .ZIP file.
Once unzipped, we have a render.cpp file and possibly an effect.cpp file.

4- Copy file(s) into the BELA :
Open a WEB browser, preferably Firefox or Chrome, to the address http://192.168.7.2

This is the server address contained in the BeagleBone system, it gives access to the programing
environment.

http://192.168.7.2/

4a- Create a new project.
In the Project Explorer tab, click on new project.

In the window that appears, choose C ++, and enter a name for the project
Click on Create.

4b- Upload the C++ file(s) into the BELA.
Back in the environment of BELA, click on Upload file :

Select the render.cpp (and any additional files like effect.cpp) created previously from the FAUST
program. (overwrite render.cpp : choose yes)

4c- RUN
Click on RUN (The circular arrow icon on the bottom left).

The compilation may take several minutes. When finished, the last lines of the console summarize
the available OSC addresses. Each address also informs about the operating range: the minimum
and maximum values of the parameter.

Faust2bela script.

If the FAUST distribution is installed on the computer, one can generate the C ++ code, without
going through the online editor, using the faust2bela script. The script can also send code files into
the BELA, compile and run it.

Options :
-tobela Send files into the BELA, compile and run it.
(without this option, files are generated, the user have to add them into BELA manualy)
-osc OSC activation.
-midi MIDI activation.
-nvoices n define a synthesizer of 'n' polyphony voices. Involves activating MIDI too.

-effect Extension for synthesizers: adds an effect after the synthesizer part
There are 2 solutions :
-effect file.dsp The effect is defined in the file
-effect auto The effect is defined in the file that contains the synthesizer.
As a reminder, in this case, in the FAUST code, the effect part is defined by:
effect = FAUST code of the effect chain;
'effect' replace 'process'.
Thus, in the .dsp file, there is a 'process' which defines the synthesizer, AND an 'effect' which
defines the effect.

The use of the BELA analog inputs is done in the FAUST code.
Example:
frequence = hslider("frequence[BELA: ANALOG_0]", 440, 20, 10000, 0.1);

Some examples :
An 8-voice synthesizer contained in the Synth-file.dsp file, which is followed by an effect contained
in the FX-file.dsp file.
faust2bela -midi -nvoices 8 -effect FX-file.dsp Synth-file.dsp

A 8 voices synthesizer. The Synth-file-withFX.dsp file contains the synth and effect code.
faust2bela -midi -nvoices 8 -effect auto Synth-file-withFX.dsp

A simple 8 voices synthesizer without effects contained in the Synth-file.dsp file.
faust2bela -midi -nvoices 8 Synth-file.dsp

MIDI controllable effect.
faust2bela -midi FX-withMIDI-CC.dsp

Effect that doesn't need MIDI :
faust2bela FX.dsp

OSC activation.
faust2bela -osc SomethingWithOSC.dsp

The script generates a folder faust.qqc in which there is another folder with the name of the .dsp
used. Inside is the file (s) to copy in the BELA.

Installing BELA

The Driver on the host computer :

https://github.com/BelaPlatform/Bela/wiki/Getting-started-with-Bela#macos-users

BELA – SD card install :

https://github.com/BelaPlatform/Bela/wiki/Manage-your-sd-card#flashing-the-bela-image

It needs a SD card of a minimum 4GB, the operation is done on a computer, and not on the
beagleBone.

1- Find the last version :
https://github.com/BelaPlatform/bela-image-builder/releases/

2- Uncompress to have a .img (it needs KEKA)
https://www.keka.io/en/

3- Open a Terminal : diskutil list
Find the name of the SD (/dev/disk1 for example)

4- Unmount the card : sudo diskutil unmountDisk /dev/disk1
You need to be Administrator of the computer.
The card disappears.

5- Write le .img into the SD card :
sudo dd if=/path/to/inputFile.img of=/dev/disk1 bs=1024k
/path/to/inputFile.img = path to the .img unzipped above :
sudo dd if=/path/to/img/bela_image_v0.3.2.img of=/dev/disk1 bs=1024k
/path/to/img = path to the disk image.

(Note: it's a bit long and we do not see anything... We have to go to the activity monitor, in Disc, we
see a line 'dd')
At the end, the card reappears on the desktop, and is called BELABOOT.

6- It's done !
Insert the SD card into the Beaglebone.

https://www.keka.io/en/
https://github.com/BelaPlatform/bela-image-builder/releases/
https://github.com/BelaPlatform/Bela/wiki/Manage-your-sd-card#flashing-the-bela-image

MEASURES

Latency measures

It may be interesting to measure the performance of BELA. It's possible to define the size of the
audio buffer in number of frames (or samples). From 2 minimum to 128 maximum, with a default
value of 16.

On the other hand, the sampling frequency and the number of bits are fixed at 44.1KHz 16bits.

The full latency of BELA comes down to:
DAC → Buffer audio IN → Buffer audio OUT → ADC
The size of the buffers is known, but it may be interesting to check that this size is well respected.
He remains the unknown of the 2 conversions

To measure this latency, a very simple program that crosses the audio signal from the inputs to the
outputs is compiled in the BELA. A 'scope' (signal display option in the BELA, like an
oscilloscope) has been added to check the signal in the BELA. An audio signal is sent into one of
the inputs of the BELA, and outputted by an audio interface.

The C++ code used into the BELA.
#include <Bela.h>
#include <Scope.h>

Scope scope;

bool setup(BelaContext *context, void *userData)
{

scope.setup(2, context->audioSampleRate);
// For this example we need the same amount of audio and analog input and output channels
if (context->audioInChannels != context->audioOutChannels ||

context->analogInChannels != context-> analogOutChannels) {
printf("Error: for this project, you need the same number of input and output channels.\n");
return false;

}
return true;

BELA

Audio interface

Computer
(MAX)

}

void render(BelaContext *context, void *userData)
{

// Simplest possible case: pass inputs through to outputs
for (unsigned int n = 0; n < context->audioFrames; n++) {

float out = audioRead(context, n, 0);
float out2 = audioRead(context, n, 1);

scope.log(out, out2);

audioWrite(context, n, 0, out);
audioWrite(context, n, 1, out2);

}
}

void cleanup(BelaContext *context, void *userData)
{

}

It's a MAX patch that takes care of generating the signal, sending it and recovering it.
But the computer itself (+ audio interface) generates latency. It must be known when exactly the
signal enters the BELA and comes out.
For this, the same signal is sent to another output of the sound card, and is directly returned to an
input. Thus, by comparing with the signal received by the BELA it is possible to find only the delay
induced by the BELA.
MAX records the 2 signals on the same file, with the pure signal as 3rd reference, as a reference.

Of course, you must first check that the signal is sent and received perfectly at the same time in the
2 outputs. Just use the same system without the BELA in the loop.
Audio interfaces do not normally have this problem of different latency between their inputs and

outputs. In the same way, nothing guarantees a priori that MAX correctly records 2 different signals
while respecting their arrival. This is the case here, where the 2 signals are perfectly identical
sample to sample. This is after all logical, a shift, even a single sample, would have adverse
consequences on the quality of the audio!

The signal sent is a square pulse. The measurement will be on the rising edge of the signal.
Of course, the perfectly straight front will be deformed by the analog stages. Effect multiplied on
the BELA because of the 2 additional conversions. This induces that the square signal has its rising
and falling edges less steep, and that a small oscillation can appear, all hindering the estimation of
the passage of the rising edge.
The choice will be made on the highest sample, in the end, the error induced here is negligible, and
as we will see, can explain the difference in measurement found with the values given by BELA.

3 measurements are made, with 3 different buffer sizes : 2 (min), 16 (default), 128 (max)

The audio file is compared in an editing software. I used Audiosculpt, because it is present on my
machine, and allows to zoom to the sample while having a displayed scale smaller than the
millisecond of millisecond.

The latency is therefore the measure of the arrival of the rising edge in the interface less this one
coming out of the BELA (by the 2nd input of the interface).
BELA(ms) indicates when the signal arrived in the BELA, compared to the beginning of the audio
file.
Interface (ms) indicates the same value, but concerning the signal passing directly in the interface.
Latency (ms) is the difference of the 2 previous signals, and gives the total latency of BELA.
Latency gives the same value expressed as the number of samples.
Knowing the size of the buffers, it is possible to find the latency induced by the 2 conversions.

The values are consistent, regardless of the size of the buffers, the latency of the conversions are
identical.

For its part, BELA gives these measures :
https://blog.bela.io/2016/11/07/bela-analogue-vs-audio/

 Bits Sample Rate (kHz) Level Coupling
Conversion
latency

Internal aliasing
filter?

Audio In 16 44.1
+/- 1V (gain
available)

AC 0.39ms yes

Audio
Out

16 44.1
+/- 1V (gain
available)

AC 0.47ms yes

Analog
In

16
22.05 x 8 44.1 x 4
88.2 x 2

0-4.096V DC < 10us no

Analog
Out

16
22.05 x 8 44.1 x 4
88.2 x 2

0-5V DC < 10us no

Therefore, give 0.39 + 0.47 or 0.86 ms AD + DA conversion. Compared to 0.95 measured. There is
a difference of almost 0.1 ms. This difference may be due to the choice of the measuring point of
the rising edge, chosen a little too late (?). This is an error of 4 samples, which seems consistent
when looking at the waveform. And the choice certainly wrong at first to choose the highest point.

0.86 ms, this is equivalent to 38 samples.

Note that the signal is reversed at the exit of BELA:
By checking the oscilloscope function of the BELA interface, which gives the shape of the signal
before its output, it is the analog output stage which inverts the signal.
Would there be an error in the setup used, or is the signal actually reversed?
The study of the electronic schema does not seem to allow such an inversion, except to imagine that
the fault is the DAC ?

BELA (ms) Interface (ms)

7.39229 6.34922 1.04307 0.952381ms

8.04985 6.37190 1.67801 0.952381ms

13.12925 6.37188 6.75737 0.952381ms

Latency (ms) Latency Latency with buffers Lat. without buffers

2 samp. 46 ech. 42 ech.

16 samp. 74 ech. 42 ech.

128 smp. 298 ech. 42 ech.

https://blog.bela.io/2016/11/07/bela-analogue-vs-audio/

FAUST performance on BELA

It's pertinent to ask the question of the interest of using FAUST to program the BELA. Certainly,
the first interest is that by using FAUST, it is no longer necessary to dive into the C ++ code. It is
possible to do the same with PureData: create its PD patch, and deposit it in the BELA which is
responsible for compiling it. But this solution is deemed not to use optimally the characteristics of
BELA. What about FAUST?

As an approach to the possibilities of BELA, one can look for how many oscillators it is possible to
generate before the processor generates an error.
The tests were done with default buffers of only 16 samples.

BELA already has some examples.
The most impressive is a code based on a library written in assembly, which can generate up to 500
oscillators! This number is not attainable other than by this special library.

A first test series was done with FAUST a non optimized oscillator:
import("stdfaust.lib");

phasor(f) = f/ma.SR : (+,1.0:fmod) ~ _ ;
osc(f, vol) = (phasor(f) * 6.28318530718 : sin)*vol;
freq = hslider("frequence[BELA: ANALOG_0]", 440, 20, 10000, 0.1);

process = par(i, 40, osc(freq*(i+1), 0.8/i)) :>_ ;
And 2 examples of BELA, with the classical math library (cmath) and with the optimized library
(neon).

Oscillators BELA(neon) BELA(cmath) FAUST
20 26% 38% 55%
30 33.2% 51.5% 73.5%
32 34.6% (59% à 2 ech.) 55.5% 87%
40 41% 65.5% -
50 49% 81% -
80 72% - -
100 87% - -

It's possible to generate 32 oscillators with this version of FAUST, and 100 with the BELA and its
optimized library. One of the reasons for this low score is certainly due to the difference in
algorithm chosen between the oscillator code of BELA and that of FAUST.

In particular, the FAUST oscillator use a Modulo :
phasor(f) = f/ma.SR : (+,1.0:fmod) ~ _ ;
Whereas the BELA oscillator instead uses a simple value comparison with an 'if'.
The modulo function use a lot of CPU.

But FAUST offers several types of oscillators. Here are tested only the sine oscillators. The number
is set at 20 to allow comparison. For Promising Versions, the maximum number was searched.

The FAUST program:
import("stdfaust.lib");
freq = hslider("frequence[BELA: ANALOG_0]", 440, 20, 10000, 0.1);
process = par(i, 20, (os.oscrs(freq*(i+1))*(0.8/(i+1)))) :> _;
oscrs is replaced by the name of the oscillator being tested.
The sum of the sines is supposed to reproduce a sawtooth signal (SAW).

WaveTable bases osc :
(os.)oscsin 27%
(os.)osci 37%

Filter-BasedOscillators
(os.)oscb 16%
The fastest but does not give a SAW (phases?). And not constant amplitude.
(os.)oscrs 17.5% Looks stable.

50 osc : 24.5%
120 osc : 44.5%
200 osc : 69% (with some Underrun...)

(os.)oscrc 17.5% Don't looks like a saw (phases?)
(os.)osc 16% Don't looks like a saw (phases?).
And have some error when frequency is too high.
(os.)oscs 16% Idem osc.

Waveguide-Resonator-BasedOscillators
(os.)oscw 20% Don't looks like a saw (phases?).
And have some error when frequency is too high.
(os.)oscws 20% Have some error when frequency is too high.

With os.oscrs, it's possible to have more than 200 oscillators. That is more than double what
the BELA can do at most (using NEON, but without the special class made in assembler).

Notes :
These measurements were made with the FAUST architecture file for BELA (bela.cpp) not

optimized. The improvement of code brings only a small increase of the available CPU resources (a
few %).

For the chosen oscillator, oscrs, the CPU load increases with the frequency:
At low frequency, it is possible to have well over 200 oscillators, and much less than 200 at high
frequency. It seems that this type of oscillator works poorly at frequencies beyond the Nyquist
frequency.

A question may arise: is the stability of the oscillators identical?
Indeed, the way of generating a sine is very different between the reading of a table and an
oscillator resulting from a filter.
The most efficient oscillator comes from a filter. Is it as stable as a conventional oscillator for
reading a wave table?

The comparison between oscrs and oscsin does not make it possible to distinguish the 2 signals.
Setup :

In FAUST, one oscillator on the right channel, the other on the left channel.
Observation by ear, and in MAX with yin ~ for the detection of the pitch, and an oscilloscope.
The 2 signals are also summed to highlight small variations and coherence of the phases.
The phase is identical on both signals, and there is no oscillation.

Compilation options

The Beaglebone has 2 compilers: clang 3.8 and gcc / g ++ 4.9
It's clang which is used by default. The command line for compiling C ++ projects from BELA is:
-O3 -march=armv7-a -mtune=cortex-a8 -mfloat-abi=hard -mfpu=neon -ftree-vectorize -ffast-
math
It is possible to change the compilation options. Some tests have been done, including changing the
optimization option -O.
The difference in performance is very low: + 1% for -O2 and +2 or 3% for -O1 compared to -O3.

More complete tests have already been done by the BELA team, the results are on this page:
https://forum.bela.io/d/60-c-11/9
gcc full-opt: -O3 -march=armv7-a -mtune=cortex-a8 -mfloat-abi=hard -mfpu=neon --fast-math -ftree-
vectorize -ftree-vectorizer-verbose=1
clang full-opt: -O3 -march=armv7-a -mtune=cortex-a8 -mfloat-abi=hard -mfpu=neon -ftree-vectorize

_main.pd(techno world) heavy:
gcc-4.6 -O2 49%
gcc-4.6 -O3 49%
gcc-4.6 full-opt 48%
gcc-4.9 -O2 48.5%
gcc-4.9 -O3 48.5%
gcc-4.9 full-opt 43.8%
gcc-5.0 full-opt 44%
clang -O2 53%
clang -O3 53%
clang full-opt 26%

_main.pd(techno world) libpd:
gcc-4.9 fullopt 53.2%
clang full-opt 52.8%

airharp (C++ project)
clang -O3 69%
clang full-opt 63.5%
gcc-4.9 -O3 68.7%
gcc-4.9 fullopt 63%

Supercollider
buildnativeclangdefault
idle 16%
120sinewaves 49.3%

buildnativeclangvectorize
idle 15.8%
120sinewaves 50%

___________________buildnativegcc49default______
idle 21%
120sinewaves51%

___________________buildnativegcc49vectorizeffastmath__________________
idle 16%
120sinewaves 49.5%

___________________buildcrossgccdefault__________________
idle 17.3%
120sinewaves 48.3%

___________________buildcrossgccvectorizefastmath__________________
idle 17.7%
120sinewaves 47.5%

https://forum.bela.io/d/60-c-11/9

DEMO FILES :

Some FAUST examples built and tested for BELA.

Synthesizers :

They are made to be controllable in MIDI.
The additive synthesizer, illustrates the use of OSC messages.
They are made in 2 versions:
- Purely MIDI
- Using Analog inputs. 4 parameters are devolved to the synth, and 4 others for the effects.
(Except the AdditiveSynth which is not powerful enough to have effects).

The synthesizer synthName+FX<_Analog>.dsp included in the same file synthesizer and effects,
for the online editor.

AdditiveSynth.dsp 78% CPU (6 voices, without FX)

Additive synthesizer with 8 harmonics, a volume envelope by harmonic.
The polyphony is reduced to 4 voices, and there is not enough CPU to add FX.
(It is especially the envelopes that make performance worse).
The setting of the parameters is done by OSC.

The Analog version allows the control of the volume of the 8 harmonics by the Analog inputs of
BELA.

OSC messages (see BELA console for precise adress)
For each harmonics (%rang indicate harmonic number, starting at 0) :
vol%rang : General Volume (vol0 control the volum of the fundamental)
(replaced by Analog_0 to Analog_7 for _analog version of this program)
A%rang : Attack
D%rang : Decay
S%rang : Sustain
R%rang : Release

FMSynth2.dsp 60% CPU (8 voices, with FX)

Simple FM with 2 operators. The modulator can also be modulated by itself (feedback).

Analogue version for the control of the parameters by the Analog inputs of BELA

MIDI IMPLEMENTATION:
CC 1 : FM feedback on modulant oscillator.
CC 14 : Modulator frequency ratio.
CC 73 : Attack
CC 76 : Decay
CC 77 : Sustain
CC 72 : Release

For Analog version :

ANALOG IMPLEMENTATION:

ANALOG_0 : Modulator frequency ratio
ANALOG_1 : Attack
ANALOG_2 : Decay/Release
ANALOG_3 : Sustain

simpleSynth.dsp 59% CPU (8 voices, with FX)

Simple classic subtractive synthesis with an oscillator.
The waveform of the oscillator can vary from sawtooth to square.
The maximum of parameters are controllable by MIDI, respecting as much as possible the
recommendations of the standard.

Analogue version for the control of the parameters by the Analog inputs of BELA

MIDI IMPLEMENTATION:
CC 70 : waveform (Saw to square)
CC 71 : Filter resonance (Q)
CC 74 : Filter Cutoff frequency
CC 79 : Filter keyboard tracking (0 to X2, default 1)
CC 75 : Filter Envelope Modulation

Envelope :
CC 73 : Attack
CC 76 : Decay
CC 77 : Sustain
CC 72 : Release

CC 78 : LFO frequency (0.001Hz to 10Hz)
CC 1 : LFO Amplitude (Modulation)

for Analog version :
ANALOG IMPLEMENTATION:
ANALOG_0 : waveform (Saw to square)
ANALOG_1 : Filter Cutoff frequency
ANALOG_2 : Filter resonance (Q)
ANALOG_3 : Filter Envelope Modulation

WaveSynth.dsp 70% CPU (8 voices, with FX)

Wavetable synthesizer test: using a MIDI controller, it is possible to travel between 4 waveforms
(see PPG / Waldorf Wave, Seq-Circuit Prophet VS ...)
The 4 waveforms are calculated by a small special code described below.

Analogue version for the control of the parameters by the Analog inputs of BELA

MIDI IMPLEMENTATION:
CC 1 : LFO Depth (wave travel modulation)
CC 14 : LFO Frequency
CC 70 : Wave travelling

CC 73 : Attack

CC 76 : Decay
CC 77 : Sustain
CC 72 : Release

ANALOG IMPLEMENTATION:
ANALOG_0 : Wave travelling
ANALOG_1 : LFO Frequency
ANALOG_2 : LFO Depth (wave travel modulation)
ANALOG_3 : Release

Effect for the synthesizers :

simpleFX.dsp

Designed to work with synthesizers, it also uses MIDI control.
The chain of effect consists of:
Distorsion – Flanger – Reverberation.
In addition, the general setting of volume and panning.

MIDI IMPLEMENTATION:
CC 7 : Volume
CC 10 : Pan

CC 92 : Distortion Drive

CC 13 : Flanger Delay
CC 93 : Flanger Dry/Wet
CC 94 : Flanger Feedback

CC 12 : Reverberation Room size
CC 91 : Reverberation Dry/Wet
CC 95 : Reverberation Damp
CC 90 : Reverberation Stereo Width

ANALOG IMPLEMENTATION:
ANALOG_4 : Distortion Drive
ANALOG_5 : Flanger Dry/Wet
ANALOG_6 : Reverberation Dry/Wet
ANALOG_7 : Reverberation Room size

Effects :

These 2 examples are intended to work with the 8 analog control inputs.
Input and output signals are stereo.

crossDelay2.dsp 28% CPU

A stereo delay with 2 feedback: a classic, a crosstalk: the signal coming out of the left channel is
injected into the right delay, and vice versa. To improve the effect, a delay without feedback is
provided as input.
Finally, a pitch shifter is inserted into the feedback loop.

ANALOG IN:

ANALOG 0 : Pre-Delay L
ANALOG 1 : Pre-Delay R
ANALOG 2 : Delay L
ANALOG 3 : Delay R
ANALOG 4 : Cross feedback
ANALOG 5 : Feedback
ANALOG 6 : Pitchshifter L
ANALOG 7 : Pitchshifter R

Available by OSC : (see BELA console for precise adress)
Feedback filter:
crossLF : Crossfeedback Lowpass
crossHF : Crossfeedback Highpass
feedbLF : Feedback Lowpass
feedbHF : Feedback Highpass

FXChaine2.dsp 64% CPU

More complete effect chain than the simpleFX
Chorus – Phaser – Delay – Reverberation
With only 8 parameters, the settings are simplified to a Dry / Wet and a main parameter by effect of
the chain.

ANALOG IN:
ANALOG 0 : Chorus Depth
ANALOG 1 : Chorus Delay
ANALOG 2 : Phaser Dry/Wet
ANALOG 3 : Phaser Frequency ratio
ANALOG 4 : Delay Dry/Wet
ANALOG 5 : Delay Time
ANALOG 6 : Reverberation Dry/Wet
ANALOG 7 : Reverberation Room size

Available by OSC : (see BELA console for precise adress)
Rate : Chorus LFO modulation rate (Hz)
Deviation : Chorus delay time deviation.

InvertSum : Phaser inversion of phaser in sum. (On/Off)
VibratoMode : Phaser vibrato Mode. (On/Off)
Speed : Phaser LFO frequency
NotchDepth : Phaser LFO depth
Feedback : Phaser Feedback
NotchWidth : Phaser Notch Width
MinNotch1 : Phaser Minimal frequency
MaxNotch1 : Phaser Maximal Frequency

Damp : Reverberation Damp
Stereo : Reverberation Stereo Width

granulator.dsp 23% CPU

From the Faust Audio Playground example.

ANALOG IN:
ANALOG 0 : Grain Size
ANALOG 1 : Speed
ANALOG 2 : Probability
(others analog inputs are not used)

GrainGenerator.dsp 33% CPU

“In progress" version of granular synthesis, ready for future evolutions (more grains, random ...)

ANALOG IN:
ANALOG 0 : Population: 0=almost nothing. 1=Full grain
ANALOG 1 : Depth of each grin, in ms.
ANALOG 2 : Position in the table = delay
ANALOG 3 : Speed = pitch change of the grains
ANALOG 4 : Feedback
(others analog inputs are not used)

repeater.dsp 13% CPU

Example of a somewhat complex code. Repeat a fragment of the incoming sound every 'n' ms.

ANALOG IN:
ANALOG 0 : Duration (ms) between 2 repeat series (500 to 2000 ms)
ANALOG 1 : Duration of one repeat (2 to 200 ms)
ANALOG 2 : Number of repeat
(others analog inputs are not used)

Some small FAUST functions :

FAUST-complement.dsp

To build the wavetable synth, 2 functions have been created :

Scanner :

It allows you to travel between an arbitrary number of entries.
Like a selector, but with an interpolation between the inputs.
2 versions are available :
scanner4(nb, position) Simplified that works from 2 to 4 entries
scanner(nb, position) Complete for 2 to more than 4 entries.

WaveTable generator :

As sinwaveform or coswaveform.
For the wavetable synthesizer or waveshapping.

RS Latch :

RS latch : an input to set the output to 0, an input to set the output to 1.

counterUpReset :

A counter that counts the input pulses up to a certain number, and stops.
A Reset input to reset the counter and allow it to re-count.

	MANUAL
	Using FAUST with BELA, manual
	Faust2bela script.
	Installing BELA
	The Driver on the host computer :
	BELA – SD card install :

	MEASURES
	Latency measures
	FAUST performance on BELA
	Compilation options

	DEMO FILES :
	Synthesizers :
	AdditiveSynth.dsp 78% CPU (6 voices, without FX)
	FMSynth2.dsp 60% CPU (8 voices, with FX)
	simpleSynth.dsp 59% CPU (8 voices, with FX)
	WaveSynth.dsp 70% CPU (8 voices, with FX)

	Effect for the synthesizers :
	simpleFX.dsp

	Effects :
	crossDelay2.dsp 28% CPU
	FXChaine2.dsp 64% CPU
	granulator.dsp 23% CPU
	GrainGenerator.dsp 33% CPU
	repeater.dsp 13% CPU

	Some small FAUST functions :
	Scanner :
	WaveTable generator :
	RS Latch :
	counterUpReset :

