
Contents
Introduction 2

What is Faust? . 2
What is Faust Good For? . 2
What is Faust Not (So) Good For? . 3
Design Principles . 3
Signal Processor Semantic . 4

Quick Start 5

Overview of the Faust Universe 5
The Faust Distribution . 5

Command-Line Compiler . 6
libfaust . 7
faust2... Scripts . 7

Web Tools . 7
The Online Editor . 7
The FaustPlayground . 7
The Faust Online Compiler . 7
Web Services . 7

Development Tools . 7
FaustLive . 7
FaustWorks . 7

Compiling and Installing Faust 7
Getting the Source Code . 7

Faust Syntax 8
Faust Program . 8
Statements . 8

Metadata Declarations . 9
Imports . 9
Documentation Tags . 9

Definitions . 10
Simple Definitions . 10

Function Definitions . 11
Definitions with pattern matching . 11
Expressions . 12

Diagram Expressions . 12
Infix Notation and Other Syntax Extensions 21
' Time Expression . 22
@ Time Expression . 23
Environment Expressions . 23
Foreign Expressions . 26
Applications and Abstractions . 27

1

Primitives . 27

Using the Faust Compiler 27

A Quick Tour of the Faust Targets 27

Mathematical Documentation 27

Introduction

What is Faust?

Faust (Functional Audio Stream) is a functional programming language for sound
synthesis and audio processing with a strong focus on the design of synthesizers,
musical instruments, audio effects, etc. Faust targets high-performance signal
processing applications and audio plug-ins for a variety of platforms and stan-
dards. It is used on stage for concerts and artistic productions, in education and
research, in open source projects as well as in commercial applications.

The core component of Faust is its compiler. It allows to “translate” any
Faust digital signal processing (DSP) specification to a wide range of non-
domain specific languages such as C++, C, JAVA, JavaScript, LLVM bit code,
WebAssembly, etc. In this regard, Faust can be seen as an alternative to C++
but is much simpler and intuitive to learn.

Thanks to a wrapping system called “architectures,” codes generated by Faust
can be easily compiled into a wide variety of objects ranging from audio plug-ins
to standalone applications or smartphone and web apps, etc. (check the Quick
Tour of the Faust Targets section for an exhaustive list.

This manual gives an overview of the Faust programming language and of its
features through various interactive examples.

What is Faust Good For?

Faust’s syntax allows to express any DSP algorithm as a block diagram. For
example, + is considered as a valid function (and block) taking two arguments
(signals) and returning one:

process = +;

Blocks can be easily connected together using the : “connection” composition:

process = + : *(0.5);

In that case, we add two signals together and then scale the result of this
operation.

2

Thus, Faust is perfect to implement time-domain algorithms that can
be easily represented as block diagrams such as filters, waveguide physical
models, virtual analog elements, etc.

Faust is very concise, for example, here’s the implementation of a one pole
filter/integrator equivalent to y(n) = x(x) + a1y(n− 1) (where a1 is the pole):

a1 = 0.9;
process = +~*(a1);

Codes generated by Faust are extremely optimized and usually more
efficient that handwritten codes (at least for C and C++). The Faust compiler
tries to optimize each element of an algorithm. For example, you shouldn’t have
to worry about using divides instead of multiplies as they get automatically
replaced by multiplies by the compiler when possible, etc.

Faust is very generic and allows to write code that will run on dozens of
platforms.

What is Faust Not (So) Good For?

Despite all this, Faust does have some limitations. For instance, it doesn’t allow
for the efficient implementation of algorithms requiring multi-rates such as the
FFT, convolution, etc. While there are tricks to go around this issue, we’re fully
aware that it is a big one and we’re working as hard as possible on it.

Faust’s conciseness can sometimes become a problem too, especially for complex
algorithms with lots of recursive signals. It is usually crucial in Faust to have
the “mental global picture” of the algorithm to be implemented which in some
cases can be hard.

While the Faust compiler is relatively bug-free, it does have some limitations and
might get stuck in some extreme cases that you will probably never encounter.
If you do, shoot us an e-mail!

From here, you can jump to . . . if you wanna get your hands dirty, etc. TODO.

Design Principles

Since the beginning of its development in 2002, Faust has been guided by various
design principles:

• Faust is a specification language. It aims at providing an adequate notation
to describe signal processors from a mathematical point of view. Faust is,
as much as possible, free from implementation details.

• Faust programs are fully compiled (i.e., not interpreted). The compiler
translates Faust programs into equivalent programs in other languages
(e.g., JAVA, JavaScript, LLVM bit code, WebAssembly, etc.) taking care

3

https://sourceforge.net/p/faudiostream/mailman/

of generating the most efficient code. The result can generally compete
with, and sometimes even outperform, C++ code written by seasoned
programmers.

• The generated code works at the sample level. It is therefore suited to
implement low-level DSP functions like recursive filters. Moreover the code
can be easily embedded. It is self-contained and doesn’t depend of any
DSP library or runtime system. It has a very deterministic behavior and a
constant memory footprint.

• The semantic of Faust is simple and well defined. This is not just of
academic interest. It allows the Faust compiler to be semantically driven.
Instead of compiling a program literally, it compiles the mathematical
function it denotes. This feature is useful for example to promote
components reuse while preserving optimal performance.

• Faust is a textual language but nevertheless block-diagram oriented. It
actually combines two approaches: functional programming and algebraic
block-diagrams. The key idea is to view block-diagram construction as
function composition. For that purpose, Faust relies on a block-diagram
algebra of five composition operations: : , ~ <: :> (see the section on
Diagram Composition Operations for more details).

• Thanks to the concept of architecture, Faust programs can be easily de-
ployed on a large variety of audio platforms and plugin formats without
any change to the Faust code.

Signal Processor Semantic

A Faust program describes a signal processor. The role of a signal processor is
to transforms a (possibly empty) group of input signals in order to produce a
(possibly empty) group of output signals. Most audio equipments can be modeled
as signal processors. They have audio inputs, audio outputs as well as control
signals interfaced with sliders, knobs, vu-meters, etc.

More precisely :

• A signal s is a discrete function of time s : Z→ R. The value of a signal s
at time t is written s(t). The values of signals are usually needed starting
from time 0. But to take into account delay operations, negative times
are possible and are always mapped to zeros. Therefore for any Faust
signal s we have ∀t < 0, s(t) = 0. In operational terms this corresponds to
assuming that all delay lines are signals initialized with 0s.

• Faust considers two type of signals: integer signals (s : Z→ Z) and floating
point signals (s : Z → Q). Exchanges with the outside world are, by
convention, made using floating point signals. The full range is represented
by sample values between −1.0 and +1.0.

• The set of all possible signals is S = Z→ R.

4

• A group of n signals (a n-tuple of signals) is written (s1, . . . , sn) ∈ Sn. The
empty tuple, single element of S0 is notated ().

• A signal processors p, is a function from n-tuples of signals to m-tuples of
signals p : Sn → Sm. The set P =

⋃
n,m Sn → Sm is the set of all possible

signal processors.

As an example, let’s express the semantic of the Faust primitive +. Like any
Faust expression, it is a signal processor. Its signature is S2 → S. It takes two
input signals X0 and X1 and produces an output signal Y such that Y (t) =
X0(t) + X1(t).

Numbers are signal processors too. For example the number 3 has signature
S0 → S. It takes no input signals and produce an output signal Y such that
Y (t) = 3.

Quick Start

TODO Will be all based on the online editor. . . May be could be a simple copy
and paste of the session 1 of the Kadenze course. . .

Overview of the Faust Universe

While in its most primitive form, Faust is distributed as a command-line compiler,
a wide range of tools have been developed around it in the course of the past
few years. Their variety and their function might be hard to grab at first. This
sort chapter provides an overview of their role and will hopefully help you decide
which one is better suited for your personal use.

TODO: here say a few words about the philosophy behind the disto: the online
editor is the way to go for most users, then various pre-compiled packages of the
compiler can be found, then source, then git. Finally other external tools for
development.

The Faust Distribution

The Faust distribution hosts the source of the Faust compiler (both in its
command line and library version), the source of the Faust architectures (targets),
the various Faust compilation scripts, a wide range of Faust-related-tools, the
Faust DSP Libraries (which in practice are hosted a separate Git submodule),
etc.

The latest stable release of the Faust distribution can be found here: https:
//github.com/grame-cncm/faust/releases. It is recommended for most Faust
users willing to compile the Faust compiler and libfaust from scratch.

5

https://github.com/grame-cncm/faust/releases
https://github.com/grame-cncm/faust/releases

To have the latest stable development version, you can use the master branch of
the Faust git repository which is hosted on GitHub: https://github.com/grame-
cncm/faust/tree/master.

For something even more bleeding edge (to be used at your own risks), you might
use the master-dev branch of the Faust git repository: https://github.com/
grame-cncm/faust/tree/master-dev. master-dev is the development sub-branch
of master. It is used by Faust developers to commit their changes and can
be considered as “the main development branch.” The goal is to make sure
that master is always functional. Merges between master-dev and master are
carried out multiple times a week by the GRAME team.

Also, note that pre-compiled packages of the Faust compiler and of
libfaust for various platforms can be found on the Download Page
of the Faust website.

The Faust distribution is organized as follows:

architecture/ : the source of the architecture files
benchmark/ : tools to measure the efficiency of the generated code
build/ : the various makefiles and build folders
compiler/ : sources of the Faust compiler
COPYING : license information
debian/ : files for Debian installation
Dockerfile : docker file
documentation/ : Faust's documentations
examples/ : Faust programs examples organized by categories
installer/ : various installers for Linux distribution
libraries/ : Faust DSP libraries
Makefile : makefile used to build and install Faust
README.md : instructions on how to build and install Faust
syntax-highlighting/ : support for syntax highlighting for several editors
tests/ : various tests
tools/ : tools to produce audio applications and plugins
windows/ : Windows related ressources

The following subsections present some of the main components of the Faust
distribution.

Command-Line Compiler

• Link to precompiled version versions (download page)
• What is the Faust compiler? (Quickly)
• Link to Using the Faust Compiler

6

https://github.com/grame-cncm/faust/tree/master
https://github.com/grame-cncm/faust/tree/master
https://github.com/grame-cncm/faust/tree/master-dev
https://github.com/grame-cncm/faust/tree/master-dev

libfaust

• Link to precompiled version versions (download page)
• What is it? (Quickly)
• Link to tutorial Embedding the Faust Compiler Using libfaust

faust2... Scripts

Web Tools

The Online Editor

The FaustPlayground

The Faust Online Compiler

Web Services

Development Tools

FaustLive

FaustWorks

Compiling and Installing Faust

This chapter describes how to get and compile the Faust compiler as well as
other tools related to Faust (e.g., libfaust, libosc, libhttpd, etc.).

Getting the Source Code

An overview of the various places where the Faust source can be downloaded is
given here.

If you downloaded the latest Faust release, just un-compressed the archive file and
open it in a terminal. For instance, something like (this might vary depending
on the version of Faust you downloaded):

tar xzf faust-2.5.31.tar.gz
cd faust-2.5.31

If you wish to get the Faust source directly from the git repository, just run:

git clone --recursive https://github.com/grame-cncm/faust.git
cd faust

7

in a terminal. Note that the --recursive option is necessary here since some
elements (e.g., the Faust DSP libraries) are placed in other repositories.

Finally, if you wish to use the development (and potentially unstable) branch,
just run:

git checkout master-dev

after the previous 2 commands.

TODO: see with Dominique for whatever comes next here. . .

Since release 2.5.18, Faust compilation and installation is based on cmake.

Faust Syntax

Faust Program

A Faust program is essentially a list of statements. These statements can
be metadata declarations, imports, definitions, and documentation tags, with
optional C++ style (//... and /*...*/) comments.

Here is a short Faust program that implements of a simple noise generator (called
from the noises.lib Faust library). It exhibits various kind of statements : two
metadata declarations, an imports, a comment, and a definition. We will study
later how documentation statements work:

declare name "Noise";
declare copyright "(c)GRAME 2018";

import("stdfaust.lib");

// noise level controlled by a slider
process = no.noise * hslider("gain",0,0,1, 0.1);

The keyword process is the equivalent of main in C/C++. Any Faust program,
to be valid, must at least define process.

Statements

The statements of a Faust program are of four kinds:

• metadata declarations,
• file imports,
• definitions,
• documentation.

All statements but documentation end with a semicolon ;.

8

Metadata Declarations

All metadata declaration in Faust start with declare.

When used in the context of Faust program (e.g., .dsp file), they are followed
by a key and a string. For example:

declare name "Noise";

allows us to specify the name of a Faust program in its whole.

When used in the context of a library (e.g., .lib file), metadata declarations
can either be “global” (as in the previous example), or associated to a specific
function. In that case, declare will be followed by the name of the function, a
key, and a string. For example:

declare add author "John Doe"
add = +;

This is very useful when a library has several contributors and that functions
potentially have different license terms.

Unlike regular comments, metadata declarations will appear in the C++ code
generated by the Faust compiler. A good practice is to start a Faust program
with some standard declarations:

declare name "MyProgram";
declare author "MySelf";
declare copyright "MyCompany";
declare version "1.00";
declare license "BSD";

Imports

File imports allow us to import definitions from other source files.

For example import("maths.lib"); imports the definitions of the maths.lib
library.

The most common file to be imported is the stdfaust.lib library which gives
access to all the standard Faust libraries from a single point:

import("stdfaust.lib");
process = os.osc(440); // the "hello world" of computer music

Documentation Tags

Documentation statements are optional and typically used to control the genera-
tion of the mathematical documentation of a Faust program. This documentation

9

system is detailed in the Mathematical Documentation chapter. In this section
we essentially describe the documentation statements syntax.

A documentation statement starts with an opening <mdoc> tag and ends with a
closing </mdoc> tag. Free text content, typically in Latex format, can be placed
in between these two tags.

Moreover, optional sub-tags can be inserted in the text content itself to require
the generation, at the insertion point, of mathematical equations, graphical
block-diagrams, Faust source code listing and explanation notice.

The generation of the mathematical equations of a Faust expression can be
requested by placing this expression between an opening <equation> and a
closing </equation> tag. The expression is evaluated within the lexical context
of the Faust program.

Similarly, the generation of the graphical block-diagram of a Faust expression
can be requested by placing this expression between an opening <diagram> and
a closing </diagram> tag. The expression is evaluated within the lexical context
of the Faust program.

The <metadata> tags allow to reference Faust metadata declarations, calling the
corresponding keyword.

The <notice/> empty-element tag is used to generate the conventions used in
the mathematical equations.

The <listing/> empty-element tag is used to generate the listing of the Faust
program. Its three attributes mdoctags, dependencies, and distributed en-
able or disable respectively <mdoc> tags, other files dependencies and distribution
of interleaved Faust code between <mdoc> sections.

Definitions

A definition associates an identifier with an expression. Definitions are essentially
a convenient shortcut avoiding to type long expressions. During compilation,
more precisely during the evaluation stage, identifiers are replaced by their
definitions. It is therefore always equivalent to use an identifier or directly its
definition. Please note that multiple definitions of a same identifier are not
allowed, unless it is a pattern matching based definition.

Simple Definitions

The syntax of a simple definition is:

identifier = expression ;

For example here is the definition of random, a simple pseudo-random number
generator:

10

random = +(12345) ~ *(1103515245);

Function Definitions

Definitions with formal parameters correspond to functions definitions.

For example the definition of linear2db, a function that converts linear values
to decibels, is:

linear2db(x) = 20*log10(x);

Please note that this notation is only a convenient alternative to the direct use
of lambda-abstractions (also called anonymous functions). The following is an
equivalent definition of linear2db using a lambda-abstraction:

linear2db = \(x).(20*log10(x));

Definitions with pattern matching

Moreover, formal parameters can also be full expressions representing patterns.

This powerful mechanism allows to algorithmically create and manipulate block
diagrams expressions. Let’s say that you want to describe a function to duplicate
an expression several times in parallel:

duplicate(1,x) = x;
duplicate(n,x) = x, duplicate(n-1,x);

Note that this last definition is a convenient alternative to the more verbose:

duplicate = case {
(1,x) => x;
(n,x) => duplicate(n-1,x);

};

A use case for duplicate could be to put 5 white noise generators in parallel:

import("stdfaust.lib");
duplicate(1,x) = x;
duplicate(n,x) = x, duplicate(n-1,x);
process = duplicate(5,no.noise);

Here is another example to count the number of elements of a list. Please note
that we simulate lists using parallel composition: (1,2,3,5,7,11). The main
limitation of this approach is that there is no empty list. Moreover lists of only
one element are represented by this element:

count((x,xs)) = 1+count(xs);
count(x) = 1;

11

If we now write count(duplicate(10,666)), the expression will be evaluated
as 10.

Note that the order of pattern matching rules matters. The more specific rules
must precede the more general rules. When this order is not respected, as in:

count(x) = 1;
count((x,xs)) = 1+count(xs);

the first rule will always match and the second rule will never be called.

Expressions

Despite its textual syntax, Faust is conceptually a block-diagram language. Faust
expressions represent DSP block-diagrams and are assembled from primitive ones
using various composition operations. More traditional numerical expressions
in infix notation are also possible. Additionally Faust provides time based
expressions, like delays, expressions related to lexical environments, expressions
to interface with foreign function and lambda expressions.

Diagram Expressions

Diagram expressions are assembled from primitive ones using either binary
composition operations or high level iterative constructions.

Diagram Composition Operations

Five binary composition operations are available to combine block-diagrams:

• recursion (~),
• parallel (,),
• sequential (:),
• split (<:),
• merge (:>).

One can think of each of these composition operations as a particular way to
connect two block diagrams.

To describe precisely how these connections are done, we have to introduce
some notation. The number of inputs and outputs of a block-diagram A are
expressed as inputs(A) and outputs(A). The inputs and outputs themselves are
respectively expressed as: [0]A, [1]A, [2]A, . . . and A[0], A[1], A[2], etc.

For each composition operation between two block-diagrams A and B we will
describe the connections A[i] → [j]B that are created and the constraints on
their relative numbers of inputs and outputs.

The priority and associativity of this five operations are:

12

Syntax Priority Association Description
expression ~ expression 4 left Recursive Composition
expression , expression 3 right Parallel Composition
expression : expression 2 right Sequential Composition
expression <: expression 1 right Split Composition
expression :> expression 1 right Merge Composition

Parallel Composition

The parallel composition (e.g., (A,B)) is probably the simplest one. It places the
two block-diagrams one on top of the other, without connections. The inputs
of the resulting block-diagram are the inputs of A and B. The outputs of the
resulting block-diagram are the outputs of A and B.

Parallel composition is an associative operation: (A,(B,C)) and ((A,B),C) are
equivalents. When no parenthesis are used (e.g., A,B,C,D), Faust uses right
associativity and therefore builds internally the expression (A,(B,(C,D))). This
organization is important to know when using pattern matching techniques on
parallel compositions.

Example: Oscillators in Parallel

Parallel composition can be used to put 3 oscillators of different kinds and
frequencies in parallel, which will result in a Faust program with 3 outputs:

import("stdfaust.lib");
process = os.osc(440),os.sawtooth(550),os.triangle(660);

Example: Stereo Effect

Parallel composition can be used to easily turn a mono effect into a stereo one
which will result in a Faust program with 2 inputs and 2 outputs:

import("stdfaust.lib");
level = 1;
process = ve.autowah(level),ve.autowah(level);

Note that there’s a better to write this last example using the par iteration:

import("stdfaust.lib");
level = 1;
process = par(i,2,ve.autowah(level));

Sequential Composition

The sequential composition (e.g., A:B) expects:

outputs(A) = inputs(B)

13

It connects each output of A to the corresponding input of B:

A[i]→ [i]B

Sequential composition is an associative operation: (A:(B:C)) and ((A:B):C)
are equivalents. When no parenthesis are used, like in A:B:C:D, Faust uses right
associativity and therefore builds internally the expression (A:(B:(C:D))).

Example: Sine Oscillator

Since everything is considered as a signal generator in Faust, sequential composi-
tion can be simply used to pass an argument to a function:

import("stdfaust.lib");
process = 440 : os.osc;

Example: Effect Chain

Sequential composition can be used to create an audio effect chain. Here we’re
plugging a guitar distortion to an autowah:

import("stdfaust.lib");
drive = 0.6;
offset = 0;
autoWahLevel = 1;
process = ef.cubicnl(drive,offset) : ve.autowah(autoWahLevel);

Split Composition

The split composition (e.g., A<:B) operator is used to distribute the outputs of
A to the inputs of B.

For the operation to be valid, the number of inputs of B must be a multiple of
the number of outputs of A:

outputs(A).k = inputs(B)

Each input i of B is connected to the output i mod k of A:

A[i mod k]→ [i]B

Example: Duplicating the Output of an Oscillator

Split composition can be used to duplicate signals. For example, the output of
the following sawtooth oscillator is duplicated 3 times in parallel.

import("stdfaust.lib");
process = os.sawtooth(440) <: _,_,_;

14

Note that this can be written in a more effective way by replacing _,_,_ with
par(i,3,_) using the par iteration.

Example: Connecting a Mono Effect to a Stereo One

More generally, the split composition can be used to connect a block with a
certain number of output to a block with a greater number of inputs:

import("stdfaust.lib");
drive = 0.6;
offset = 0;
process = ef.cubicnl(drive,offset) <: dm.zita_light;

Note that an arbitrary number of signals can be split, for example:

import("stdfaust.lib");
drive = 0.6;
offset = 0;
process = par(i,2,ef.cubicnl(drive,offset)) <: par(i,2,dm.zita_light);

Once again, the only rule with this is that in the expression A<:B the number of
inputs of B has to be a multiple of the number of outputs of A.

Merge Composition

The merge composition (e.g., A:>B) is the dual of the split composition. The
number of outputs of A must be a multiple of the number of inputs of B:

outputs(A) = k.inputs(B)

Each output i of A is connected to the input i mod k of B :

A[i]→ [i mod k]B

The k incoming signals of an input of B are summed together.

Example: Summing Signals Together - Additive Synthesis

Merge composition can be used to sum an arbitrary number of signals together.
Here’s an example of a simple additive synthesizer (note that the result of the
sum of the signals is divided by 3 to prevent clicking):

import("stdfaust.lib");
freq = hslider("freq",440,50,3000,0.01);
gain = hslider("gain",1,0,1,0.01);
gate = button("gate");
envelope = gain*gate : si.smoo;
process = os.osc(freq),os.osc(freq*2),os.osc(freq*3) :> /(3)*envelope;

15

While the resulting block diagram will look slightly different, this is mathemati-
cally equivalent to:

import("stdfaust.lib");
freq = hslider("freq",440,50,3000,0.01);
gain = hslider("gain",1,0,1,0.01);
gate = button("gate");
envelope = gain*gate : si.smoo;
process = (os.osc(freq) + os.osc(freq*2) + os.osc(freq*3))/(3)*envelope;

Example: Connecting a Stereo Effect to a Mono One

More generally, the merge composition can be used to connect a block with a
certain number of output to a block with a smaller number of inputs:

import("stdfaust.lib");
drive = 0.6;
offset = 0;
process = dm.zita_light :> ef.cubicnl(drive,offset);

Note that an arbitrary number of signals can be split, for example:

import("stdfaust.lib");
drive = 0.6;
offset = 0;
process = par(i,2,dm.zita_light) :> par(i,2,ef.cubicnl(drive,offset));

Once again, the only rule with this is that in the expression A:>B the number of
outputs of A has to be a multiple of the number of inputs of B.

Recursive Composition

The recursive composition (e.g., A~B) is used to create cycles in the block-diagram
in order to express recursive computations. It is the most complex operation in
terms of connections.

To be applicable, it requires that:

outputs(A) ≥ inputs(B)andinputs(A) ≥ outputs(B)

Each input of B is connected to the corresponding output of A via an implicit
1-sample delay :

A[i] Z−1

→ [i]B

and each output of B is connected to the corresponding input of A:

B[i]→ [i]A

16

The inputs of the resulting block diagram are the remaining unconnected inputs
of A. The outputs are all the outputs of A.

Example: Timer

Recursive composition can be used to implement a “timer” that will count each
sample starting at time n = 0:

process = _~+(1);

The difference equation corresponding to this program is:

y(n) = y(n− 1) + 1

an its output signal will look like: (1, 2, 3, 4, 5, 6, . . .).

Example: One Pole Filter

Recursive composition can be used to implement a one pole filter with one line
of code and just a few characters:

a1 = 0.999; // the pole
process = +~*(a1);

The difference equation corresponding to this program is:

y(n) = x(n) + a1y(n− 1)

Note that the one sample delay of the filter is implicit here so it doesn’t have to
be declared.

Inputs and Outputs of an Expression

The number of inputs and outputs of a Faust expression can be known at compile
time simply by using inputs(expression) and outputs(expression).

For example, the number of outputs of a sine wave oscillator can be known
simply by writing the following program:

import("stdfaust.lib");
process = outputs(os.osc(440));

Note that Faust automatically simplified the expression by generating a program
that just outputs 1.

This type of construction is useful to define high order functions and build
algorithmically complex block-diagrams. Here is an example to automatically
reverse the order of the outputs of an expression.

17

Xo(expr) = expr <: par(i,n,ba.selector(n-i-1,n))
with {
n = outputs(expr);

};

And the inputs of an expression :

Xi(expr) = si.bus(n) <: par(i,n,ba.selector(n-i-1,n)) : expr
with {
n = inputs(expr);

};

For example Xi(-) will reverse the order of the two inputs of the substraction:

import("stdfaust.lib");
Xi(expr) = si.bus(n) <: par(i,n,ba.selector(n-i-1,n)) : expr
with {
n = inputs(expr);

};
toto = os.osc(440),os.sawtooth(440), os.triangle(440);
process = Xi(-);

Iterations

Iterations are analogous to for(...) loops in other languages and provide a
convenient way to automate some complex block-diagram constructions.

The use and role of par, seq, sum, and prod are detailed in the following sections.

par Iteration

The par iteration can be used to duplicate an expression in parallel. Just like
other types of iterations in Faust:

• its first argument is a variable name containing the number of the current
iteration (a bit like the variable that is usually named i in a for loop)
starting at 0,

• its second argument is the number of iterations,
• its third argument is the expression to be duplicated.

Example: Simple Additive Synthesizer

import("stdfaust.lib");
freq = hslider("freq",440,50,3000,0.01);
gain = hslider("gain",1,0,1,0.01);
gate = button("gate");
envelope = gain*gate : si.smoo;
nHarmonics = 4;
process = par(i,nHarmonics,os.osc(freq*(i+1))) :> /(nHarmonics)*envelope;

18

i is used here at each iteration to compute the value of the frequency of the
current oscillator. Also, note that this example could be re-wrtitten using sum
iteration (see example in the corresponding section).

seq Iteration

The seq iteration can be used to duplicate an expression in series. Just like
other types of iterations in Faust:

• its first argument is a variable name containing the number of the current
iteration (a bit like the variable that is usually named i in a for loop)
starting at 0,

• its second argument is the number of iterations,
• its third argument is the expression to be duplicated.

Example: Peak Equalizer

The fi.peak_eq function of the Faust libraries implements a second order “peak
equalizer” section (gain boost or cut near some frequency). When placed in
series, it can be used to implement a full peak equalizer:

import("stdfaust.lib");
nBands = 8;
filterBank(N) = hgroup("Filter Bank",seq(i,N,oneBand(i)))
with{

oneBand(j) = vgroup("[%j]Band %a",fi.peak_eq(l,f,b))
with{

a = j+1; // just so that band numbers don't start at 0
l = vslider("[2]Level[unit:db]",0,-70,12,0.01) : si.smoo;
f = nentry("[1]Freq",(80+(1000*8/N*(j+1)-80)),20,20000,0.01) : si.smoo;
b = f/hslider("[0]Q[style:knob]",1,1,50,0.01) : si.smoo;

};
};
process = filterBank(nBands);

Note that i is used here at each iteration to compute various elements and to
format some labels. Having user interface elements with different names is a way
to force their differentiation in the generated interface.

sum Iteration

The sum iteration can be used to duplicate an expression as a sum. Just like
other types of iterations in Faust:

• its first argument is a variable name containing the number of the current
iteration (a bit like the variable that is usually named i in a for loop)
starting at 0,

• its second argument is the number of iterations,

19

• its third argument is the expression to be duplicated.

Example: Simple Additive Synthesizer

The following example is just a slightly different version from the one presented
in the par iteration section. While their block diagrams look slightly different,
the generated code is exactly the same.

import("stdfaust.lib");
freq = hslider("freq",440,50,3000,0.01);
gain = hslider("gain",1,0,1,0.01);
gate = button("gate");
envelope = gain*gate : si.smoo;
nHarmonics = 4;
process = sum(i,nHarmonics,os.osc(freq*(i+1)))/(nHarmonics)*envelope;

i is used here at each iteration to compute the value of the frequency of the
current oscillator.

prod Iteration

The sum iteration can be used to duplicate an expression as a product. Just like
other types of iterations in Faust:

• its first argument is a variable name containing the number of the current
iteration (a bit like the variable that is usually named i in a for loop)
starting at 0,

• its second argument is the number of iterations,
• its third argument is the expression to be duplicated.

Example: Amplitude Modulation Synthesizer

The following example implements an amplitude modulation synthesizer using
an arbitrary number of oscillators thanks to the prod iteration:

import("stdfaust.lib");
freq = hslider("[0]freq",440,50,3000,0.01);
gain = hslider("[1]gain",1,0,1,0.01);
shift = hslider("[2]shift",0,0,1,0.01);
gate = button("[3]gate");
envelope = gain*gate : si.smoo;
nOscs = 4;
process = prod(i,nOscs,os.osc(freq*(i+1+shift)))*envelope;

i is used here at each iteration to compute the value of the frequency of the
current oscillator. Note that the shift parameter can be used to tune the
frequency drift between each oscillator.

20

Infix Notation and Other Syntax Extensions

Infix notation is commonly used in mathematics. It consists in
placing the operand between the arguments as in 2 + 3

Besides its algebra-based core syntax, Faust provides some syntax extensions,
in particular the familiar infix notation. For example if you want to multiply
two numbers, say 2 and 3, you can write directly 2*3 instead of the equivalent
core-syntax expression 2,3 : *.

The infix notation is not limited to numbers or numerical expressions. Arbitrary
expressions A and B can be used, provided that A,B has exactly two outputs. For
example _/2 is equivalent to _,2:/ which divides the incoming signal by 2.

Here are a few examples of equivalences:

Infix Syntax Core Syntax
2-3 ≡ 2,3 : -
2*3 ≡ 2,3 : *
_@7 ≡ _,7 : @
_/2 ≡ _,2 : /
A<B ≡ A,B : <

In case of doubts on the meaning of an infix expression, for example _*_, it is
useful to translate it to its core syntax equivalent, here _,_:*, which is equivalent
to *.

Infix Operators

Built-in primitives that can be used in infix notation are called infix operators
and are listed below. Please note that a more detailed description of these
operators is available section on primitives.

Prefix Notation

Beside infix notation, it is also possible to use prefix notation. The prefix notation
is the usual mathematical notation for functions f(x, y, z, . . .), but extended to
infix operators.

It consists in first having the operator, for example /, followed by its arguments
between parentheses: /(2,3):

Prefix Syntax Core Syntax
*(2,3) ≡ 2,3 : *
@(_,7) ≡ _,7 : @

21

Prefix Syntax Core Syntax
/(_,2) ≡ _,2 : /
<(A,B) ≡ A,B : <

Partial Application

The partial application notation is a variant of the prefix notation in which not
all arguments are given. For instance /(2) (divide by 2), ˆ(3) (rise to the cube),
and @(512) (delay by 512 samples) are examples of partial applications where
only one argument is given. The result of a partial application is a function that
“waits” for the remaining arguments.

When doing partial application with an infix operator, it is important to note
that the supplied argument is not the first argument, but always the second one:

Prefix Partial Application Syntax Core Syntax
+(C) ≡ _,C : *
-(C) ≡ _,C : -
<(C) ≡ _,C : <
/(C) ≡ _,C : /

For commutative operations that doesn’t matter. But for non-commutative ones,
it is more “natural” to fix the second argument. We use divide by 2 (/(2)) or
rise to the cube (ˆ(3)) more often than the other way around.

Please note that this rule only applies to infix operators, not to other primitives
or functions. If you partially apply a regular function to a single argument, it
will correspond to the first parameter.

Example: Gain Controller

The following example demonstrates the use of partial application in the context
of a gain controller:

gain = hslider("gain",0.5,0,1,0.01);
process = *(gain);

' Time Expression

' is used to express a one sample delay. For example:

process = _';

will delay the incoming signal by one sample.

' time expressions can be chained, so the output signal of this program:

22

process = 1'';

will look like: (0, 0, 1, 1, 1, 1, . . .).

The ' time expression is useful when designing filters, etc. and is equivalent to
@(1) (see the @ Time Expression).

@ Time Expression

@ is used to express a delay with an arbitrary number of samples. For example:

process = @(10);

will delay the incoming signal by 10 samples.

A delay expressed with @ doesn’t have to be fixed but it must be positive and
bounded. Therefore, the values of a slider are perfectly acceptable:

process = @(hslider("delay",0,0,100,1));

@ only allows for the implementation of integer delay. Thus, various fractional
delay algorithms are implemented in the Faust libraries.

Environment Expressions

Faust is a lexically scoped language. The meaning of a Faust expression is
determined by its context of definition (its lexical environment) and not by its
context of use.

To keep their original meaning, Faust expressions are bounded to their lexical
environment in structures called closures. The following constructions allow to
explicitly create and access such environments. Moreover they provide powerful
means to reuse existing code and promote modular design.

with Expression

The with construction allows to specify a local environment: a private list of
definition that will be used to evaluate the left hand expression.

In the following example :

pink = f : + ~ g
with {
f(x) = 0.04957526213389*x - 0.06305581334498*x' + 0.01483220320740*x'';
g(x) = 1.80116083982126*x - 0.80257737639225*x';

};
process = pink;

23

the definitions of f(x) and g(x) are local to f : + ~ g.

Please note that with is left associative and has the lowest priority:

• f : + ~ g with {...} is equivalent to (f : + ~ g) with {...}.
• f : + ~ g with {...} with {...} is equivalent to ((f : + ~ g)

with {...}) with {...}.

letrec Expression

The letrec construction is somehow similar to with, but for difference equations
instead of regular definitions. It allows us to easily express groups of mutually
recursive signals, for example:

x(t) = y(t− 1) + 10y(t) = x(t− 1)− 1

as E letrec { 'x = y+10; 'y = x-1; }

The syntax is defined by the following rules:

Note the special notation 'x = y + 10 instead of x = y' + 10. It makes
syntactically impossible to write non-sensical equations like x=x+1.

Here is a more involved example. Let say we want to define an envelope generator
with an attack and a release time (as a number of samples), and a gate signal.
A possible definition could be:

import("stdfaust.lib");
ar(a,r,g) = v
letrec {

'n = (n+1) * (g<=g');
'v = max(0, v + (n<a)/a - (n>=a)/r) * (g<=g');

};
gate = button("gate");
process = os.osc(440)*ar(1000,1000,gate);

With the following semantics for n(t) and v(t):

n(t) = (n(t−1)+1)∗(g(t) <= g(t−1))v(t) = max(0, v(t−1)+(n(t−1) < a(t))/a(t)−(n(t−1) >= a(t))/r(t))∗(g(t) <= g(t−1))

environment Expression

The environment construction allows to create an explicit environment. It is
like a ‘with’, but without the left hand expression. It is a convenient way to
group together related definitions, to isolate groups of definitions and to create
a name space hierarchy.

24

In the following example an environment construction is used to group together
some constant definitions :

constant = environment {
pi = 3.14159;
e = 2,718;
...

};

The . construction allows to access the definitions of an environment (see next
section).

Access Expression

Definitions inside an environment can be accessed using the . construction.

For example constant.pi refers to the definition of pi in the constant envi-
ronment defined above.

Note that environments don’t have to be named. We could have written directly:

environment{pi = 3.14159; e = 2,718;....}.pi

library Expression

The library construct allows to create an environment by reading the definitions
from a file.

For example library("filters.lib") represents the environment obtained by
reading the file filters.lib. It works like import("miscfilter.lib") but all
the read definitions are stored in a new separate lexical environment. Individual
definitions can be accessed as described in the previous paragraph. For example
library("filters.lib").lowpass denotes the function lowpass as defined in
the file miscfilter.lib.

To avoid name conflicts when importing libraries it is recommended to prefer
library to import. So instead of :

import("filters.lib");
...

...lowpass....
...

};

the following will ensure an absence of conflicts :

fl = library("filters.lib");
...

...fl.lowpass....
...

25

};

In practice, that’s how the stdfaust.lib library works.

component Expression

The component construction allows us to reuse a full Faust program (e.g., a
.dsp file) as a simple expression.

For example component("freeverb.dsp") denotes the signal processor defined
in file freeverb.dsp.

Components can be used within expressions like in:

...component("karplus32.dsp") : component("freeverb.dsp")...

Please note that component("freeverb.dsp") is equivalent to library("freeverb.dsp").process.

component works well in tandem with explicit substitution (see next section).

Explicit Substitution

Explicit substitution can be used to customize a component or any expression
with a lexical environment by replacing some of its internal definitions, without
having to modify it.

For example we can create a customized version of component("freeverb.dsp"),
with a different definition of foo(x), by writing:

...component("freeverb.dsp")[foo(x) = ...;]...
};

Foreign Expressions

Reference to external C functions, variables and constants can be introduced
using the foreign function mechanism.

ffunction

Signature

Types

Variables and Constants

26

File Include

Library File

Applications and Abstractions

Abstractions

Applications

Pattern Matching

Primitives

Using the Faust Compiler

A Quick Tour of the Faust Targets

Mathematical Documentation

27

	Introduction
	What is Faust?
	What is Faust Good For?
	What is Faust Not (So) Good For?
	Design Principles
	Signal Processor Semantic

	Quick Start
	Overview of the Faust Universe
	The Faust Distribution
	Command-Line Compiler
	libfaust
	faust2... Scripts

	Web Tools
	The Online Editor
	The FaustPlayground
	The Faust Online Compiler
	Web Services

	Development Tools
	FaustLive
	FaustWorks

	Compiling and Installing Faust
	Getting the Source Code

	Faust Syntax
	Faust Program
	Statements
	Metadata Declarations
	Imports
	Documentation Tags

	Definitions
	Simple Definitions

	Function Definitions
	Definitions with pattern matching
	Expressions
	Diagram Expressions
	Infix Notation and Other Syntax Extensions
	' Time Expression
	@ Time Expression
	Environment Expressions
	Foreign Expressions
	Applications and Abstractions

	Primitives

	Using the Faust Compiler
	A Quick Tour of the Faust Targets
	Mathematical Documentation

