GA_ABS_VALUE
GA_ABS_VALUE_PATCH
GA_ACC

GA_ACCESS
GA_ACCESS_BLOCK
GA_ACCESS BLOCK GRID
GA_ACCESS_BLOCK_SEGMENT
GA_ACCESS GHOST ELEMENT
GA_ACCESS_GHOSTS
GA_ADD

GA_ADD_PATCH
GA_ADD_CONSTANT
GA_ADD_CONSTANT_PATCH
GA_ADD_DIAGONAL
GA_ALLOCATE

GA_BRDCST
GA_CHECK_HANDLE
GA_CLUSTER_NNODES
GA_CLUSTER_NODEID
GA_CLUSTER _PROC_NODEID
GA_CLUSTER_NPROCS
GA_CLUSTER_PROCID
GA_COMPARE_DISTR
GA_COPY

GA_COPY_PATCH
GA_CREATE
GA_CREATE_CONFIG
GA_CREATE_GHOSTS
GA_CREATE_GHOSTS_CONFIG
GA_CREATE_HANDLE
GA_CREATE_IRREG
GA_CREATE IRREG_CONFIG
GA_CREATE_GHOSTS_IRREG
GA_CREATE_GHOSTS IRREG_CONFIG
GA_CREATE_MUTEXES
GA_DDOT

GA_DDOT_PATCH
GA_DESTROY
GA_DESTROY_MUTEXES
GA_DGEMM

GA_DGOP

GA DIAG

GA_DIAG_REUSE

GA DIAG_STD
GA_DISTRIBUTION
GA_DUPLICATE
GA_ELEM_MULTIPLY
GA_ELEM MULTIPLY PATCH
GA_ELEM_DIVIDE

GA_ELEM DIVIDE PATCH
GA_ELEM_MAXIMUM
GA_ELEM MAXIMUM_PATCH
GA_ELEM_MINIMUM
GA_ELEM MINIMUM_PATCH
GA_FENCE

GA FILL

GA_FILL_PATCH
GA_GATHER

GA_GET

GA_GET BLOCK_INFO
GA_GET_DIAG
GA_GET_DEBUG
GA_HAS_GHOSTS

GA_IDOT

GA_IDOT_PATCH

GA_IGOP

GA_INIT_FENCE
GA_INITIALIZE
GA_INITIALIZE_LTD
GA_INQUIRE
GA_INQUIRE_MEMORY
GA_INQUIRE_NAME

http://www.emsl.pnl.gov/docs/global/c_op index.html Tue 31 Mar 2009 04:31:30 PM PDT

GA_IS_MIRRORED
GA_LGOP

GA_LIST NODEID
GA_LLT_SOLVE
GA_LOCATE
GA_LOCATE_REGION
GA_LOCK

GA_LU_SOLVE
GA_MASK_SYNC
GA_MATMUL_PATCH
GA_MATMUL_PATCH(N)
GA_MEDIAN
GA_MEDIAN_PATCH
GA_MEMORY_AVAIL
GA_MEMORY LIMITED
GA_MERGE_DISTR_PATCH
GA_MERGE_MIRRORED
GA_MPI_COMMUNICATOR
GA_NBACC

GA_NBGET

GA_NBGET GHOST DIR
GA_NBLOCK

GA_NBPUT

GA_NBWAIT

GA_NDIM

GA_NNODES

GA_NODEID

GA_NORM1
GA_NORM_INFINITY
GA_PATCH_ENUM
GA_PACK
GA_PERIODIC_ACC
GA_PERIODIC GET
GA_PERIODIC_PUT
GA_PGROUP_BRDCST
GA_PGROUP_CREATE
GA_PGROUP_DESTROY
GA_PGROUP_DGOP
GA_PGROUP_FGOP
GA_PGROUP_GET_DEFAULT
GA_PGROUP_GET MIRROR
GA_PGROUP_GET_WORLD
GA_PGROUP_IGOP
GA_PGROUP_LGOP
GA_PGROUP_NNODES
GA_PGROUP_NODEID
GA_PGROUP_SET DEFAULT
GA_PGROUP_SPLIT
GA_PGROUP_SPLIT IRREG
GA_PGROUP_SYNC
GA_PRINT
GA_PRINT_DISTRIBUTION
GA_PRINT FILE
GA_PRINT_PATCH
GA_PRINT STATS
GA_PROC_TOPOLOGY
GA_PUT

GA_READ_INC

GA RECIP
GA_RECIP_PATCH
GA_RELEASE
GA_RELEASE_BLOCK

GA RELEASE_BLOCK GRID
GA_RELEASE_BLOCK_SEGMENT
GA RELEASE_UPDATE
GA_RELEASE_UPDATE_BLOCK
GA RELEASE_UPDATE_BLOCK_GRID
GA_RELEASE_UPDATE_BLOCK_SEGMENT
GA SCALE
GA_SCALE_PATCH
GA_SCALE_ROWS
GA_SCALE_COLS

http://www.emsl.pnl.gov/docs/global/c_op index.html Tue 31 Mar 2009 04:31:30 PM PDT

GA_SCAN_ADD
GA_SCAN_COPY
GA_SCATTER
GA_SCATTER_ACC

GA SELECT ELEM
GA_SET_ARRAY_NAME
GA SET BLOCK CYCLIC
GA SET BLOCK CYCLIC PROC GRID
GA SET_CHUNK
GA_SET DATA

GA_SET DEBUG

GA SET DIAGONAL
GA_SET_GHOSTS
GA_SET_IRREG DISTR
GA SET_MEMORY_LIMIT
GA_SET_PGROUP
GA_SGEMM

GA SHIFT DIAGONAL
GA_SOLVE
GA_SPD_INVERT

GA _STEP_MAX
GA_STEP_MAX2

GA STEP_MAX_ PATCH
GA_STEP_MAX2_ PATCH
GA_STRIDED ACC
GA_STRIDED_ GET
GA_STRIDED PUT
GA_SUMMARIZE

GA SYMMETRIZE
GA_SYNC

GA TERMINATE
GA_TOTAL_BLOCKS
GA_TRANSPOSE
GA_UNLOCK
GA_UNPACK
GA_UPDATE_GHOSTS
GA_UPDATE_GHOST DIR
GA_USES MA

GA WTIME

GA_ZDOT
GA_ZDOT_PATCH
GA_ZERO

GA_ZERO PATCH
GA_ZERO_DIAGONAL
GA_ZGEMM

Additional Explanations

http://www.emsl.pnl.gov/docs/global/c_op index.html Tue 31 Mar 2009 04:31:30 PM PDT

GA_INITIALIZE

void GA_Initialize()

Allocate and initialize internal data structures in Global Arrays.

This is a collective operation.

GA_INITIALIZE LTD
void GA_Initialize ltd(size_t limit)
limit amount of memory in bytes per process [input]

Allocate and initialize internal data structures and set limit for memory used in global arrays. The
limit is per process: it is the amount of memory that the given processor can contribute to collective
allocation of global arrays. It does not include temporary storage that GA might be allocating (and
releasing) during execution of a particular operation.

*limit < 0 means "allow unlimited memory usage" in which case this operation is equivalent to GA
initialize.

This is a collective operation.

GA_PGROUP_CREATE

int GA_Pgroup_create(int *list, int size)

list[size] list of processor IDs in group [input]
size number of processors in group [input]

This command is used to create a processor group. At present, it must be invoked by all processors
in the current default processor group. The list of processors use the indexing scheme of the default
processor group. If the default processor group is the world group, then these indices are the usual
processor indices. This function returns a process group handle that can be used to reference this
group by other functions.

This is a collective operation on the default processor group.

GA_PGROUP_DESTROY

int GA_Pgroup_destroy(int p_handle)

p_handle processor group handle [input]

This command is used to free up a processor group handle. It returns 0 if the processor group
handle was not previously active.

This is a collective operation on the default processor group.

GA_PGROUP_SET DEFAULT

void GA_Pgroup_set_default(int p_handle)
p_handle processor group handle [input]

This function can be used to reset the default processor group on a collection of processors. All
processors in the group referenced by p_handle must make a call to this function. Any standard
global array call that is made after resetting the default processor group will be restricted to
processors in that group. Global arrays that are created after resetting the default processor group
will only be defined on that group and global operations such as GA_Sync or GA_Igop will be

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

restricted to processors in that group. The GA_Pgroup set default call can be used to rapidly
convert large applications, written with GA, into routines that run on processor groups.

The default processor group can be overridden by using GA calls that require an explicit group
handle as one of the arguments.

This is a collective operation on the group represented by the handle p handle.

NGA_CREATE

int NGA_Create(int type, int ndim, int dims[], char *array_name, int chunk[])

array_name - a unique character string [input]
type - data type (MT_F _DBL,MT_F INT,MT_F DCPL) [input]
ndim - number of array dimensions [input]
dims[ndim] - array of dimensions [input]
chunk[ndim] - array of chunks, each element specifies minimum size that

given dimensions should be chunked up into [input]

Creates an ndim-dimensional array using the regular distribution model and returns integer handle
representing the array.

The array can be distributed evenly or not. The control over the distribution is accomplished by
specifying chunk (block) size for all or some of array dimensions. For example, for a 2-dimensional
array, setting chunk[0]=dim[0] gives distribution by vertical strips (chunk[0]*dims[0]); setting
chunk[1]=dim[1] gives distribution by horizontal strips (chunk[1]*dims[1]). Actual chunks will be
modified so that they are at least the size of the minimum and each process has either zero or one
chunk. Specifying chunk[i] as <1 will cause that dimension to be distributed evenly.

As a convenience, when chunk is specified as NULL, the entire array is distributed evenly.

Return value: a non-zero array handle means the call was succesful.
This is a collective operation.

NGA_CREATE_CONFIG

int NGA_Create_config(int type, int ndim, int dims[], char *array_name,
int chunk[], int p_handle)

array_name - a unique character string [input]

type - data type (MT F DBL,MT F INT,MT F DCPL) [input]

ndim - number of array dimensions [input]

dims[ndim] - array of dimensions [input]

chunk[ndim] - array of chunks, each element specifies minimum size that
given dimensions should be chunked up into [input]

p_handle - processor list handle [input]

Creates an ndim-dimensional array using the regular distribution model but with an explicitly
specified processor list handle and returns an integer handle representing the array.

This call is essentially the same as the NGA_Create call, except for the processor list handle p_
handle. It can be used to create mirrored arrays.

Return value: a non-zero array handle means the call was succesful.
This is a collective operation.

NGA_CREATE_GHOSTS

int NGA_Create_ghosts(int type, int ndim, int dims[], int width[],
char *array_name, int chunk[])

array_name - a unique character string [input]
type - data type (MT DBL,MT INT,MT DCPL) [input]
ndim - number of array dimensions [input]
dims[ndim] - array of dimensions [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

width[ndim] - array of ghost cell widths [input]

chunk[ndim] - array of chunks, each element specifies
minimum size that given dimensions should be
chunked up into [input]

Creates an ndim-dimensional array with a layer of ghost cells around the visible data on each
processor using the regular distribution model and returns an integer handle representing the
array.

The array can be distributed evenly or not evenly. The control over the distribution is accomplished
by specifying chunk (block) size for all or some of the array dimensions. For example, for a 2-
dimensional array, setting chunk(1)=dim(1) gives distribution by vertical strips (chunk(1)*dims(1));
setting chunk(2)=dim(2) gives distribution by horizontal strips (chunk(2)*dims(2)). Actual chunks
will be modified so that they are at least the size of the minimum and each process has either zero
or one chunk. Specifying chunk(i) as <1 will cause that dimension (i-th) to be distributed evenly.
The width of the ghost cell layer in each dimension is specified using the array width(). The local
data of the global array residing on each processor will have a layer width[n] ghosts cells wide on
either side of the visible data along the dimension n.

Return value: a non-zero array handle means the call was successful. This is a collective operation.

NGA_CREATE_GHOSTS_CONFIG

int NGA_Create_ghosts_config(int type, int ndim, int dims[],
int width[], char *array_name, int chunk[], int p_handle)

array name - a unique character string [input]
type - data type (MT_DBL,MT_INT,MT_DCPL) [input]
ndim - number of array dimensions [input]
dims[ndim] - array of dimensions [input]
width[ndim] - array of ghost cell widths [input]
chunk[ndim] - array of chunks, each element specifies

minimum size that given dimensions should be

chunked up into [input]
p _handle - processor list handle

Creates an ndim-dimensional array with a layer of ghost cells around the visible data on each
processor using the regular distribution model and an explicitly specified processor list and
returns an integer handle representing the array.

This call is essentially the same as the NGA_Create ghosts call, except for the processor list
handle p _handle. It can be used to create mirrored arrays.

Return value: a non-zero array handle means the call was successful. This is a collective operation.

NGA_CREATE_IRREG

int NGA_Create_irreg(int type, int ndim, int dims[], char *array_name, int block[], int map[])

array_name - a unique character string [input]
type - MA data type (MT F DBL,MT F INT,MT F DCPL) [input]
ndim - number of array dimensions [input]
dims - array of dimension values [input]
nblock[ndim] - no. of blocks each dimension is divided into [input]
map[s] - starting index for for each block; the size

s is a sum all elements of nblock array [input]

Creates an array by following the user-specified distribution and returns integer handle
representing the array.

The distribution is specified as a Cartesian product of distributions for each dimension. The array
indices start at 0. For example, the following figure demonstrates distribution of a 2-dimensional
array 8x10 on 6 (or more) processors. nblock[2]={3,2}, the size of map array is s=5 and array
map contains the following elements map={0,2,6, 0, 5}. The distribution is nonuniform because, P1
and P4 get 20 elements each and processors P0,P2,P3, and P5 only 10 elements each.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

PO P3 2
P1 P4 4
P2 P5 2

Return value: a non-zero array handle means the call was succesful.
This is a collective operation.

NGA_CREATE_IRREG_CONFIG

int NGA_Create_irreg_config(int type, int ndim, int dims[], char *array_name,
int block[], int map[], int p_handle)

array_name - a unique character string [input]
type - MA data type (MT F DBL,MT F INT,MT F DCPL) [input]
ndim - number of array dimensions [input]
dims - array of dimension values [input]
nblock[ndim] - no. of blocks each dimension is divided into [input]
map[s] - starting index for for each block; the size

s is a sum all elements of nblock array [input]
p_handle - processor list handle

Creates an array by following the user-specified distribution and an explicitly specified processor
list handle and returns an integer handle representing the array.

This call is essentially the same as the NGA Create irreg call, except for the processor list handle
p_handle. It can be used to create mirrored arrays.

Return value: a non-zero array handle means the call was succesful.
This is a collective operation.

NGA_CREATE_GHOST IRREG

int NGA_Create_ghost_irreg(int type, int ndim, int dims[], width[],
char *array_name, map[], nblock[])

array name - a unique character string [input]
type - data type (MT_DBL,MT_INT,MT_DCPL) [input]
ndim - number of array dimensions [input]
dims[ndim] - array of dimensions [input]
width[ndim] - array of ghost cell widths [input]
nblock[ndim] - no. of blocks each dimension is divided into[input]
map[s] - starting index for for each block; the size

s is a sum of all elements of nblock array [input]

Creates an array with ghost cells by following the user-specified distribution and returns integer
handle representing the array.

The distribution is specified as a Cartesian product of distributions for each dimension. For
example, the following figure demonstrates distribution of a 2-dimensional array 8x10 on 6 (or
more) processors. nblock(2)={3,2}, the size of map array is s=5 and array map contains the
following elements map={1,3,7, 1, 6}. The distribution is nonuniform because, P1 and P4 get 20
elements each and processors P0,P2,P3, and P5 only 10 elements each.

) 5

PO P3 2

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

P1 P4 4

P2 P5 2

The array width[] is used to control the width of the ghost cell boundary around the visible data on
each processor. The local data of the global array residing on each processor will have a layer
width[n] ghosts cells wide on either side of the visible data along the dimension n.

Return value: a non-zero array handle means the call was succesful.
This is a collective operation.

NGA_CREATE_GHOSTS_IRREG_CONFIG

int NGA_Create_ghost_irreg_config(int type, int ndim, int dims[],
width[], char *array_name, map[], nblock[], int p_handle)

array_name - a unique character string [input]
type - data type (MT DBL,MT INT,MT DCPL) [input]
ndim - number of array dimensions [input]
dims[ndim] - array of dimensions [input]
width[ndim] - array of ghost cell widths [input]
nblock[ndim] - no. of blocks each dimension is divided into[input]
map[s] - starting index for for each block; the size

s is a sum of all elements of nblock array [input]
p_handle - processor list handle [input] [

Creates an array with ghost cells by following the user-specified distribution and returns integer
handle representing the array.

This call is essentially the same as the NGA Create ghosts irreg call, except for the processor list
handle p_handle. It can be used to create mirrored arrays.

Return value: a non-zero array handle means the call was succesful.

This is a collective operation.

GA_CREATE_HANDLE

int GA_Create_handle()

This function returns a global array handle that can then be used to create a new global array. This
is part of a new API for creating global arrays that is designed to replace the old interface built
around the NGA_Create xxx calls. The sequence of operations is to begin with a call to GA_Greate
handle to get a new array handle. The attributes of the array, such as dimension, size, type, etc. can
then be set using successive calls to the GA_Set_xxx subroutines. When all array attributes have
been set, the GA_Allocate subroutine is called and the global array is actually created and memory
for it is allocated.

This is a collective operation.

GA_SET ARRAY NAME

void GA_Set_array_name(int g_a, char *name)

g_a [input]
name - array name [input]

This function can be used to assign a unique character string name to a global array handle that
was obtained using the GA Create handle function.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

This is a collective operation.

GA_SET DATA

void GA_Set_data(int g_a, int ndim, int dims[], int type)

g a [input]
ndim - dimension of global array [input]
dims|[] - dimensions of global array [input]
type - data type of global array [input]

This function can be used to set the array dimension, the coordinate dimensions, and the data type
assigned to a global array handle obtained using the GA Create handle function.

This is a collective operation.

GA_SET IRREG_DISTR

void GA_Set_irreg_distr(int g_a, int mapc[], int nblock[])

g_a [input]
mapc[s] - starting index for each block; the size

s is the sum of all elements of the array

nblock [input]
nblock[ndim] - number of blocks that each dimension is

divided into [input]

This function can be used to partition the array data among the individual processors for a global
array handle obtained using the GA_Create _handle function.

The distribution is specified as a Cartesian product of distributions for each dimension. For
example, the following figure demonstrates distribution of a 2-dimensional array 8x10 on 6 (or
more) processors. nblock(2)={3,2}, the size of mapc array is s=5 and array mapc contains the
following elements mapc={1,3,7, 1, 6}. The distribution is nonuniform because, P1 and P4 get 20
elements each and processors P0,P2,P3, and P5 only 10 elements each.

5 5
PO P3 2
P1 P4 4
P2 P5 2

The array width() is used to control the width of the ghost cell boundary around the visible data on
each processor. The local data of the global array residing on each processor will have a layer
width(n) ghosts cells wide on either side of the visible data along the dimension n.

This is a collective operation.

GA_SET PGROUP

void GA_Set_pgroup(int g_a, int p_handle)

g_a [input]

p_handle processor group handle [input]

This function can be used to set the processor configuration assigned to a global array handle that
was obtained using the GA_Create _handlefunction. It can be used to create mirrored arrays by

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

using the mirrored array processor configuration in this function call. It can also be used to create
an array on a processor group by using a processor group handle in this call.

This is a collective operation.

GA_SET_GHOSTS

void GA_Set_ghosts(int g_a, int width[])

g_a [input]
width[ndim] - array of ghost cell widths [input]

This function can be used to set the ghost cell widths for a global array handle that was obtained
using the GA_Create _handle function. The ghosts cells widths indicate how many ghost cells are
used to pad the locally held array data along each dimension. The padding can be set independently
for each coordinate dimension.

This is a collective operation.

GA_SET _CHUNK

void GA_Set_chunk(int g_a, int chunk[])

g_a [input]
chunk[] - array of chunk widths [input]

This function is used to set the chunk array for a global array handle that was obtained using the
GA_Create handle function. The chunk array is used to determine the minimum number of array
elements assigned to each processor along each coordinate direction.

This is a collective operation.

GA_SET BLOCK_CYCLIC

void GA_Set_block_cyclic(int g_a, int dims[])

g a - global array handle [input]
dims[] - array of block dimensions [input]

This subroutine is used to create a global array with a simple block-cyclic data distribution. The
array is broken up into blocks of size dims and each block is numbered sequentially using a column
major indexing scheme. The blocks are then assigned in a simple round-robin fashion to
processors. This is illustrated in the figure below for an array containing 25 blocks distributed on 4
processors. Blocks at the edge of the array may be smaller than the block size specified in dims. In
the example below, blocks 4,9,14,19,20,21,22,23, and 24 might be smaller thatn the remaining
blocks. Most global array operations are insensitive to whether or not a block-cyclic data
distribution is used, although performance may be slower in some cases if the global array is using
a block-cyclic data distribution. Individual data blocks can be accessesed using the block-cyclic
access functions.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

0 5 10 (|15 |20
PO |P1 |P2 |P3 PO

1 6 11 16 |21
P1 |P2 |P3 |PO |P1

2 7 12 |17 ||22
P2 |P3 |PO |P1 ||P2

3 8 13 |18 ||23
P3 |PO |P1 P2 |P3

4 9 14 |19 |24
PO |P1 |P2 |P3 |P4

This is a collective operation.

GA_SET BLOCK_CYCLIC_PROC_GRID

void GA_Set_block_cyclic(int g_a, int dims[], int proc_grid[])

g a - global array handle [input]
dims[] - array of block dimensions [input]
proc_grid[] - processor grid dimensions [input]

This subroutine is used to create a global array with a SCALAPACK-type block cyclic data
distribution. The user specifies the dimensions of the processor grid in the array proc_grid. The
product of the processor grid dimensions must equal the number of total number of processors
and the number of dimensions in the processor grid must be the same as the number of dimensions
in the global array. The data blocks are mapped onto the processor grid in a cyclic manner along
each of the processor grid axes. This is illustrated below for an array consisting of 25 data blocks
disributed on 6 processors. The 6 processors are configured in a 3 by 2 processor grid. Blocks at
the edge of the array may be smaller than the block size specified in dims. Most global array
operations are insensitive to whether or not a block-cyclic data distribution is used, although
performance may be slower in some cases if the global array is using a block-cyclic data
distribution. Individual data blocks can be accessesed using the block-cyclic access functions.

(0,0) ((0,1) {(0,0) |(0,1) (0,0)
PO |P3 |PO |P3 PO

(1,0) |(1,1) |(1,0) |(1,1) |(1,0)
P1 |P4 |P1 |P4 |P1

(2,0) |(2,1) |(2,0) |(2,1) |(2,0)
P2 |P5 |P2 |P5 |P2

(0,0) |(0,1) |(0,0) (0,1) |(0,0)
PO |P3 |PO |P3 PO

(1,0) |(1,1) |(1,0) |(1,1) |(1.0)
P1 |P4 |P1 |P4 |P1

This is a collective operation.

GA_ALLOCATE

int GA_Allocate(int g_a)
g_a [input]

This function allocates the memory for the global array handle originally obtained using the GA_
Create_handle function. At a minimum, the GA_Set_data function must be called before the memory
is allocated. Other GA_Set xxx functions can also be called before invoking this function.

This is a collective operation.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

GA_UPDATE_GHOSTS

void GA_Update_ghosts(int g_a)

This call updates the ghost cell regions on each processor with the corresponding neighbor data
from other processors. The operation assumes that all data is wrapped around using periodic
boundary data so that ghost cell data that goes beyound an array boundary is wrapped around to
the other end of the array. The GA Update ghosts call contains two GA_Sync calls before and
after the actual update operation. For some applications these calls may be unecessary, if so they
can be removed using the GA_Mask sync subroutine.

This is a collective operation.

NGA_UPDATE_GHOST DIR

int NGA_Update_ghost_dir(int g_a, int dimension, int idir, int cflag)

g a [input]
dimension - array dimension that is to be updated [input]
idir - direction of update (+/- 1) [input]
cflag - flag (0/1) to include corners in update [input]

This function can be used to update the ghost cells along individual directions. It is designed for
algorithms that can overlap updates with computation. The variable dimension indicates which
coordinate direction is to be updated (e.g. dimension = 1 would correspond to the y axis in a two or
three dimensional system), the variable idir can take the values +/-1 and indicates whether the side
that is to be updated lies in the positive or negative direction, and cflag indicates whether or not the
corners on the side being updated are to be included in the update. The following calls would be
equivalent to a call to GA_Update ghosts for a 2-dimensional system:

status = NGA Update ghost dir(g a,0,-1,1);
status = NGA Update ghost dir(g a,0,1,1);
status = NGA Update ghost dir(g a,1,-1,0);
status = NGA Update ghost dir(g a,1,1,0);

The variable cflag is set equal to 1 (or non-zero) in the first two calls so that the corner ghost cells
are update, it is set equal to 0 in the second two calls to avoid redundant updates of the corners.
Note that updating the ghosts cells using several independent calls to the nga update ghost dir
functions is generally not as efficient as using GA_ Update ghosts unless the individual calls can
be effectively overlapped with computation.

This is a collective operation.

GA_HAS_GHOSTS

int GA_Has_ghosts(int g_a)

This function returns 1 if the global array has some dimensions for which the ghost cell width is
greater than zero, it returns 0 otherwise.
This is a collective operation.

NGA_ACCESS_GHOSTS

void NGA_Access_ghosts(int g_a, int dims[], void *ptr, int 1d[])

g_a [input]
dims[ndim] - array of dimensions of local patch, including

ghost cells [output]
ptr - returns an index corresponding to the origin

the global array patch held locally on the

processor [output]
ld[ndim-1]1 - physical dimenstions of the local array patch,

including ghost cells [output]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

Provides access to the local patch of the global array. Returns leading dimension Id and and
pointer for the data. This routine will provide access to the ghost cell data residing on each
processor. Calls to NGA_Access_ghosts should normally follow a call to NGA_ Distribution that
returns coordinates of the visible data patch associated with a processor. You need to make sure
that the coordinates of the patch are valid (test values returned from NGA_Distribution).

You can only access local data.
This is a local operation.

NGA_ACCESS_GHOST ELEMENT

void NGA_Access_ghost_element(int g_a, void *ptr, int subscript[],

int 1d[])

g a [input]
index - index pointing to location of element

indexed by subscript][] [output]
subscript[ndim] - array of integers that index desired

element [input]
ld[ndim-1] - array of strides for local data patch.

These include ghost cell widths. [output]

This function can be used to return a pointer to any data element in the locally held portion of the
global array and can be used to directly access ghost cell data. The array subscript refers to the
local index of the element relative to the origin of the local patch (which is assumed to be indexed
by (0,0,...)).

This is a local operation.

GA_TOTAL_BLOCKS

int GA_Total_blocks(int g_a)
g a [input]

This function returns the total number of blocks contained in a global array with a block-cyclic
data distribution. This is a local operation.

GA_GET BLOCK_INFO

void GA_Get_block_info(int g_a, int num_blocks[], int block_dims[])

g_a [input]
num blocks[ndim] - number of blocks along each axis [output]
block _dims[ndim] - dimensions of block [output]

This subroutine returns information about the block-cyclic distribution associated with global array
g_a. The number of blocks along each of the array axes are returned in the array num_ blocks and
the dimensions of the individual blocks, specified in the GA_Set block cyclic or GA_Set block_
cyclic proc_grid subroutines, are returned in block dims. This is a local function.

GA_DUPLICATE

int GA_Duplicate(int g_a, char* array_name)

array name - a character string [input]
g a - integer handle for reference array [input]

Creates a new array by applying all the properties of another existing array. It returns array
handle.

Return value: a non-zero array handle means the call was succesful.
This is a collective operation.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

GA_DESTROY

void GA_Destroy(int g_a)
g a - array handle [input]
Deallocates the array and frees any associated resources.

This is a collective operation.

GA_TERMINATE

void GA_Terminate()

Delete all active arrays and destroy internal data structures.

This is a collective operation.

GA_SYNC
void GA_Sync()
Synchronize processes (a barrier) and ensure that all GA operations completed.

This is a collective operation.

GA_MASK_SYNC

void GA_Mask_sync(int first,int last)

first - mask (0/1) for prior internal synchronization [input]
last - mask (0/1) for post internal synchronization [input]

This subroutine can be used to remove synchronization calls from around collective operations.
Setting the parameter first = .false. removes the synchronization prior to the collective operation,
setting last = .false. removes the synchronization call after the collective operation. This call is
applicable to all collective operations. It most be invoked before each collective operation.

This is a collective operation.

GA_ZERO

void GA_Zero(int g_a)
g a - array handle [input]
Sets value of all elements in the array to zero.

This is a collective operation.

GA_FILL

void GA_Fill(int g_a, void *value)

g a - array handle [input]

value - pointer to the value of appropriate type (double/DoubleComplex/long)
that matches array type

Assign a single value to all elements in the array.

This is a collective operation.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

GA_DOT
int GA_Idot(int g_a, int g_b)
long GA Ldot(int g a, int g b)
float GA_Fdot(int g _a, int g_b)
double GA Ddot(int g a, int g b)

DoubleComplex GA Zdot(int g_a, int g_b)
ga, gb - array handles [input]

Computes the element-wise dot product of the two arrays which must be of the same types and
same number of elements.

return value = SUM ij a(i,j)*b(i,])

This is a collective operation.

GA_SCALE

void GA_Scale(int g_a, void *value)

g a - array handle [input]
value - pointer to the value of appropriate type (double/DoubleComplex/long)
that matches array type [input]

Scales an array by the constant s. Note that the library is unable to detect errors when the pointed
value is of different type than the array.

This is a collective operation.

GA_ADD

void GA_Add(void *alpha, int g_a, void* beta, int g_b, int g_c)

g_a, gb, gc - array handles [input]
double/complex/int *alpha - scale factor [input]
double/complex/int *beta - scale factor [input]

The arrays (which must be the same shape and identically aligned) are added together element-wise
c = alpha * a + beta * b.
The result (c) may replace one of the input arrays (a/b).

This is a collective operation.

GA_COPY

void GA_Copy(int g_a, int g_b)
g a, g b - array handles [input]

Copies elements in array represented by g _a into the array represented by g b. The arrays must be
the same type, shape, and identically aligned.

This is a collective operation.

GA_SET_MEMORY_LIMIT

void GA_Set_memory_limit(size_t limit)

limit - the amount of memory in bytes per process [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

Sets the amount of memory to be used (in bytes) per process

This is a local operation.

GA_GET
void NGA_Get(int g_a, int lo[], int hi[], void* buf, int 1d[])
g a - global array handle [input]
ndim - number of dimensions of the global array
lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
buf - pointer to the local buffer array where the data goes [output]

ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]

Copies data from global array section to the local array buffer. The local array is assumed to be
have the same number of dimensions as the global array. Any detected inconsitencies/errors in the
input arguments are fatal.

Example:

For ga_get operation transfering data from the [10:14,0:4] section of 2-dimensional 15x10 global

array into local buffer 5x10 array we have:
lo={10,0}, hi={14,4}, 1d={10}

15

10 10

This is a one-sided operation.

GA_PERIODIC_GET

void NGA_Periodic_get(int g_a, int lo[]l, int hi[], void* buf, int 1d[])

g a - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
buf - pointer to the local buffer array where the data goes [output]

ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]

Same as nga_get except the indices can extend beyond the array boundary/dimensions in which
case the library wraps them around.
This is a one-sided operation.

GA_STRIDED GET

void NGA_Strided_get(int g_a, int lo[], int hi[], int skip[], void* buf, int 1d[])

g a - global array handle [input]
ndim - number of dimensions of the global array
lo[ndim] - array of starting indices for global array section [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

hi[ndim] - array of ending indices for global array section [input]
skip[ndim] - array of strides for each dimension [input]
buf - pointer to the local buffer array where the data goes [output]
ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]

This operation is the same as NGA_Get, except that the values corresponding to dimension n in buf
correspond to every skip[n] values of the global array g a. This is a one-sided operation.

GA_PUT
void NGA_Put(int g_a, int lo[], int hi[], void* buf, int 1d[])
g a - global array handle [output]
ndim - number of dimensions of the global array
lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
buf - pointer to the local buffer array where the data is [input]

ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]

Copies data from local array buffer to the global array section . The local array is assumed to be
have the same number of dimensions as the global array.
Any detected inconsitencies/errors in input arguments are fatal.

This is a one-sided operation.

GA_PERIODIC_PUT

void NGA_Periodic_put(int g_a, int lo[], int hi[], void* buf, int 1d[])

g a - global array handle [output]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
buf - pointer to the local buffer array where the data is [input]

ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]

Same as nga_put except the indices can extend beyond the array boundary/dimensions in which
case the library wraps them around.
This is a one-sided operation.

GA_STRIDED PUT

void NGA_Strided_put(int g_a, int lo[], int hi[], int skip[], void* buf, int ld[])

g a - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
skip[ndim] - array of strides for each dimension [input]
buf - pointer to the local buffer array where the data goes [output]

ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]

This operation is the same as NGA_Put, except that the values corresponding to dimension n in buf
are copied to every skip[n] values of the global array g _a. This is a one-sided operation.

GA_ACC
void NGA_Acc(int g_a, int lo[], int hi[], void* buf, int 1d[], void* alpha)
g a - global array handle [input]
ndim - number of dimensions of the global array
lo[ndim] - array of starting indices for array section [input]
hi[ndim] - array of ending indices for array section [input]
buf - pointer to the local buffer array [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]
double/DoubleComplex/long *alpha scale factor [input]

Combines data from local array buffer with data in the global array section. The local array is
assumed to be have the same number of dimensions as the global array.

global array section (lo[],hi[]) += *alpha * buffer

This is a one-sided and atomic operation.

GA_PERIODIC_ACC

void NGA_Periodic_acc(int g_a, int lo[], int hi[], void* buf, int 1d[], void* alpha)

g a - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for array section [input]
hi[ndim] - array of ending indices for array section [input]
buf - pointer to the local buffer array [input]
ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]
double/DoubleComplex/long *alpha scale factor [input]

Same as nga_acc except the indices can extend beyond the array boundary/dimensions in which
case the library wraps them around.
This is a one-sided and atomic operation.

GA_STRIDED ACC

void NGA_Strided_acc(int g_a, int lo[], int hi[], int skip[], void* buf, int 1d[])

ga - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
skip[ndim] - array of strides for each dimension [input]
buf - pointer to the local buffer array where the data goes [output]
ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]
double/DoublComplex/long *alpha scale factor [input]

This operation is the same as NGA_Acc, except that the values corresponding to dimension n in buf
are accumulated to every skip[n] values of the global array g a. This is a one-sided operation.

GA_DISTRIBUTION

void NGA_Distribution(int g_a, int iproc, int lo[], int hi[])

g a - array handle [input]
iproc - process number [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for array section [input]
hi[ndim] - array of ending indices for array section [input]

If no array elements are owned by process iproc, the range is returned as lo[1=0 and hi[1= -1
for all dimensions.
This operation is local.

GA_COMPARE_DISTR

int GA_Compare_distr(int g_a, int g_b)
ga, gb - array handles [input]

Compares distributions of two global arrays. Returns 0 if distributions are identical and 1 when
they are not.

This is a collective operation.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

GA_ACCESS

void NGA_Access(int g_a, int lo[]l, int hi[], void *ptr, int 1d[])

g a - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for array section [input]
hi[ndim] - array of ending indices for array section [input]
ptr - points to location of first element in patch [output]
ld[ndim-1] - leading dimensions for the pacth elements [output]

Provides access to the specified patch of a global array. Returns array of leading dimensions 1d and
a pointer to the first element in the patch. This routine allows to access directly, in place elements
in the local section of a global array. It useful for writing new GA operations. A call to ga_access
normally follows a previous call to ga_distribution that returns coordinates of the patch associated
with a processor. You need to make sure that the coordinates of the patch are valid (test values
returned from ga_distribution).

Each call to ga_access has to be followed by a call to either ga_release or ga_release update. You
can access in this fashion only local data. Since the data is shared with other processes, you need
to consider issues of mutual exclusion.

This operation is local.

GA_ACCESS_BLOCK_SEGMENT

void NGA_Access_block_segment(int g_a, int proc, void *ptr, int len)

g a - array handle [input]
proc - processor ID [input]
ptr - pointer to locally held data [output]
len - length of data on processor [output]

This function can be used to gain access to the all the locally held data on a particular processor
that is associated with a block-cyclic distributed array. Once the index has been returned, local
data can be accessed as described in the documentation for NGA_Access. The parameter len is the
number of data elements that are held locally. The data inside this segment has a lot of additional
structure so this function is not generally useful to developers. It is primarily used inside the GA
library to implement other GA routines. Each call to ga_access_block segment should be followed

by a call to either NGA Release block segment or NGA Release update block segment.

This is a local operation.

GA_ACCESS_BLOCK

void NGA_Access_block(int g_a, int idx, int index, int 1d[])

ga - array handle [input]
ndim - number of array dimensions

idx - block index [input]
index - pointer to locally held block [output]
ld[ndim-1] - array of leading dimensions [output]

This function can be used to gain direct access to the data represented by a single block in a global
array with a block-cyclic data distribution. The index idx is the index of the block in the array
assuming that blocks are numbered sequentially in a column-major order. A quick way of
determining whether a block with index idx is held locally on a processor is to calculate whether
mod(idx,nproc) equals the processor ID, where nproc is the total number of processors. Once the
index has been returned, local data can be accessed as described in the documentation for NGA _
Access. Each call to ga_access block should be followed by a call to either NGA Release block or
NGA Release update block.

This is a local operation.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

GA_ACCESS_BLOCK_GRID

void NGA_Access_block_grid(int g_a, int subscript[], void *ptr, int 1d[])

g a - array handle [input]
ndim - number of array dimensions

subscript[ndim] - subscript of block in array [input]
ptr - pointer to locally held bloc [output]
ld[ndim-1] - array of leading dimensions [output]

This function can be used to gain direct access to the data represented by a single block in a global
array with a SCALAPACK block-cyclic data distribution that is based on an underlying processor
grid. The subscript array contains the subscript of the block in the array of blocks. This subscript is
based on the location of the block in a grid, each of whose dimensions is equal to the number of
blocks that fit along that dimension. Once the index has been returned, local data can be accessed
as described in the documentation for NGA_Access. Each call to ga_access_block grid should be
followed by a call to either NGA Release block grid or NGA Release update block grid.

This is a local operation.

GA_RELEASE
void NGA_Release(int g_a, int lo[], int hi[])
g a - global array handle [input]
ndim - number of dimensions of the global array
lo[ndim] - array of starting indices for array section [input]
hi[ndim] - array of ending indices for array section [input]

Releases access to a global array when the data was read only.
Your code should look like:

NGA Distribution(g_a, myproc, lo,hi);
NGA Access(g a, lo, hi, &ptr, 1d);

<operate on the data referenced by ptr>
GA Release(g a, lo, hi);

NOTE: see restrictions specified for ga_access
This operation is local.

GA_RELEASE_UPDATE

void NGA_Release_update(int g_a, int lo[], int hi[])

g a - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for array section [input]
hi[ndim] - array of ending indices for array section [input]

Releases access to the data. It must be used if the data was accessed for writing. NOTE: see
restrictions specified for ga_access.
This operation is local.

GA_RELEASE_BLOCK

void NGA_Release_block(int g_a, int index)

g a - array handle [input]
index - block index [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

Releases access to the block of data specified by the integer index when data was accessed as read
only. This is only applicable to block-cyclic data distributions created using the simple block-cyclic
distribution. This is a local operation.

GA_RELEASE_UPDATE_BLOCK

void NGA_Release_update_block(int g_a, int index)

g a - array handle [input]
index - block index [input]

Releases access to the block of data specified by the integer index when data was accessed in read-
write mode. This is only applicable to block-cyclic data distributions created using the simple block-
cyclic distribution. This is a local operation.

GA_RELEASE_ BLOCK _GRID

void NGA_Release_block_grid(int g_a, int subscript[])

g a - array handle [input]
ndim - number of dimensions of the global array
subscript[ndim] - indices of block in array [input]

Releases access to the block of data specified by the subscript array when data was accessed as
read only. This is only applicable to block-cyclic data distributions created using the SCALAPACK
data distribution. This is a local operation.

GA_RELEASE_UPDATE_BLOCK_GRID

void NGA_Release_update_block_grid(int g_a, int subscript[])

g a - array handle [input]
ndim - number of dimensions of the global array
subscript[ndim] - indices of block in array [input]

Releases access to the block of data specified by the subscript array when data was accessed in
read-write mode. This is only applicable to block-cyclic data distributions created using the
SCALAPACK data distribution. This is a local operation.

GA_RELEASE_BLOCK_SEGMENT

void NGA_Release_block_segment(int g_a, int iproc)

g a - array handle [input]
iproc - processor ID [input]

Releases access to the block of locally held data for a block-cyclic array, when data was accessed
as read-only. This is a local operation.

GA_RELEASE_UPDATE_BLOCK_SEGMENT

void NGA_Release_block_segment(int g_a, int iproc)

g a - array handle [input]
iproc - processor ID [input]

Releases access to the block of locally held data for a block-cyclic array, when data was accessed
as read-only. This is a local operation.

GA_READ INC

long NGA_Read_inc(int g_a, int subscript[], long inc)

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

g a - global array handle [input]
ndim - number of dimensions of the global array
subscript[ndim] - subscript array for the referenced element [input]

Atomically read and increment an element in an integer array.

BEGIN CRITICAL SECTION
old value = a(subscript)
a(subscript) += inc

END CRITICAL SECTION
return old value

This is a one-sided and atomic operation.

GA_SCATTER
void NGA_Scatter(int g_a, void *v, int* subsArray[], int n)
g a - global array handle [input]
n - number of elements [input]
v[n] - array containing values [input]
ndim - number of array dimensions
subsArray[n] [ndim] - array of subscripts for each element [input]

Scatters array elements into a global array. The contents of the input arrays (v,subscrArray) are
preserved, but their contents might be (consistently) shuffled on return.

for(k=0; k<= n; k++){
a[subsArray[k][0]][subsArray[k][1]][subsArray[k][2]]... = v[k];
}

This is a one-sided operation.

GA_GATHER

void NGA_Gather(int g_a, void *v, int* subsArray[], int n)

g a - global array handle [input]
n - number of elements [input]
v[n] - array containing values [input]
ndim - number of array dimensions

subsArray[n] [ndim] - array of subscripts for each element [input]

Gathers array elements from a global array into a local array. The contents of the input arrays (v,
subscrArray) are preserved, but their contents might be (consistently) shuffled on return.

for(k=0; k<= n; k++){
v[k] = a[subsArray[k][0]][subsArray[k][1]][subsArray[k][2]]...;
}

This is a one-sided operation.

GA_SCATTER_ACC

void NGA_Scatter_acc(int g_a, void *v, int* subsArray[], int n, void *alpha)

ga - global array handle [input]
n - number of elements [input]
v[n] - array containing values [input]
ndim - number of array dimensions

subsArray[n] [ndim] - array of subscripts for each element [input]
alpha - multiplicative factor [input]

Scatters array elements from a local array into a global array. Adds values from the local array to
existing values in the global array after multiplying by alpha. The contents of the input arrays (v,
subscrArray) are preserved, but their contents might be (consistently) shuffled on return.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

for(k=0; k<= n; k++){
v[k]l = al[subsArray[k][0]]1[subsArray[k][1]][subsArray[k][2]]...;
}

This is a one-sided operation.

GA_ERROR

void GA_Error(char *message, int code)

message - string to print [input]
code - code to print [input]

To be called in case of an error. Print an error message and an integer value that represents error
code. Releases some system resources. This is the required way of aborting the program execution.
This operation is local.

GA_LOCATE

int NGA_Locate(int g_a, int subscript[])

g a array handle [input]
subscript[ndim] element subscript [output]

Return in owner the GA compute process id that 'owns' the data. If any element of subscript[] is out
of bounds "-1" is returned.
This operation is local.

GA_LOCATE_REGION

int NGA_Locate_region(int g_a, int lo[], int hi[], int map[], int procs[])

ga - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for array section [input]
hi[ndim] - array of ending indices for array section [input]
map[][2*ndim] - array with mapping information [output]
procs[nproc] - list of processes that own a part of array section[output]

Return the list of the GA processes id that 'own' the data. Parts of the specified patch might be
actually 'owned' by several processes. If lo/hi are out of bounds "0" is returned, otherwise return
value is equal to the number of processes that hold the data .

map[i][0:ndim-1] - lo[i]
map[i] [ndim:2*ndim-1] - hi[il]
procs[i] - processor id that owns data in patch lo[i]:hi[i]

This operation is local.

GA_INQUIRE
void NGA_Inquire(int g_a, int *type, int *ndim, int dims[])
g a - array handle [input]
type - data type [output]
ndim - number of dimensions [output]
dims - array of dimensions [output]

Returns data type and dimensions of the array.
This operation is local.

GA_INQUIRE_MEMORY

size_t GA_Inquire_memory()

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

Returns amount of memory (in bytes) used in the allocated global arrays on the calling processor.
This operation is local.

GA_INQUIRE_NAME
char* GA_Inquire_name(int g_a)

g a - array handle [input]

Returns the name of an array represented by the handle g a.
This operation is local.

GA_NDIM

int GA_Ndim(int g_a)
g a - array handle [input]

Returns the number of dimensions in array represented by the handle g a.
This operation is local.

GA_NBLOCK

void GA_Nblock(int g_a, int nblock[])

| a - array handle [input]
nblock[ndim] - number of partitions for each dimension [output]

Given a distribution of an array represented by the handle g _a, returns the number of partitions of
each array dimension.
This operation is local.

GA_MEMORY AVAIL

size_t GA_Memory_avail()

Returns amount of memory (in bytes) left for allocation of new global arrays on the calling
Processor.

Note: If GA uses _ma returns true, then GA Memory avail returns the lesser of the amount
available under the GA limit and the amount available from MA (according to ma inquire avail
operation). If no GA limit has been set, it returns what MA says is available.

If (! GA Uses ma() && ! GA Memory limited()) returns < 0, indicating that the bound on currently
available memory cannot be determined.
This operation is local.

GA_USES_MA

int GA_Uses_ma()

Returns "1" if memory in global arrays comes from the Memory Allocator (MA). "0"means that
memory comes from another source, for example System V shared memory is used.
This operation is local.

GA_MEMORY_LIMITED

int GA_Memory_limited()

Indicates if limit is set on memory usage in Global Arrays on the calling processor. "1" means "yes",
"0" means "no".
This operation is local.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

GA_PROC_TOPOLOGY

void NGA_Proc_topology(int g_a, int proc, int coordinates[])

g a array handle [input]
ndim number of array dimensions
proc process id [input]

coordinates[ndim] coordinates in processor grid [output]

Based on the distribution of an array associated with handle g a, determines coordinates of the
specified processor in the virtual processor grid corresponding to the distribution of array g a. The
numbering starts from 0. The values of -1 means that the processor doesn't ‘'own' any section of
array represented by g a.

This operation is local.

GA_PRINT FILE

void GA_Print_file(FILE *file, int g_a)

file - file pointer [input]
g a - array handle [input]

Prints an entire array to a file.

This is a collective operation.

GA_PRINT PATCH

void NGA_Print_patch(int g_a, int lo[],int hi[],int pretty)

g a - array handle [input]
lo[],hi[] - coordinates of the patch [input]
int pretty - formatting flag [input]

Prints a patch of g a array to the standard output. If pretty has the value 0 then output is printed in
a dense fashion. If pretty has the value 1 then output is formatted and rows/columns labeled.

This is a collective operation.

GA_PRINT

void GA_Print(int g_a)

g a - array handle [input]
Prints an entire array to the standard output.

This is a collective operation.

GA_PRINT STATS

void GA_Print_stats()

This non-collective (MIMD) operation prints information about:

o number of calls to the GA create/duplicate, destroy, get, put, scatter, gather, and read and inc
operations

total amount of data moved in the GA primitive operations

amount of data moved in GA primitive operations to logicaly remote locations

maximum memory consumption in global arrays, and

number of requests serviced in the interrupt-driven implementations by the calling process.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

This operation is local.

GA_PRINT _DISTRIBUTION

void GA Print_distribution(int g_a)

ga - array handle [input]
Prints the array distribution.

This is a collective operation.

GA_CHECK HANDLE

void GA_Check_handle(int g_a, char* string)

g a - array handle [input]
string - message string [input]

Check that the global array handle g a is valid ... if not call ga_error with the string provided and
some more info.
This operation is local.

GA_INIT_FENCE

void GA_Init_fence()

Initializes tracing of completion status of data movement operations.
This operation is local.

GA_FENCE

void GA_Fence()

Blocks the calling process until all the data transfers corresponding to GA operations called after
ga_init fence complete. For example, since ga_put might return before the data reaches the final
destination, ga_init fence and ga_fence allow process to wait until the data tranfer is fully
completed:

ga _init fence();
ga put(g_a, ...);
ga fence();

ga_fence must be called after ga_init fence. A barrier, ga_sync, assures completion of all data
transfers and implicitly cancels all outstanding ga_init fence calls. ga_init fence and ga_fence must
be used in pairs, multiple calls to ga_fence require the same number of corresponding ga_init fence
calls. ga_init fence/ga fence pairs can be nested.

ga_fence works for multiple GA operations. For example:

ga_init_fence();

ga_put(g_a, ...);
ga_scatter(g_ a, ...);
ga_put(g_b, ...);
ga_fence();

The calling process will be blocked until data movements initiated by two calls to ga_put and one
ga_scatter complete.

GA_CREATE_MUTEXES

int GA_Create_mutexes(int number)

number - number of mutexes in mutex array [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

Creates a set containing the number of mutexes. Returns 0 if the opereation succeeded or 1 when
failed. Mutex is a simple synchronization object used to protect Critical Sections. Only one set of
mutexes can exist at a time. Array of mutexes can be created and destroyed as many times as
needed.

Mutexes are numbered: O, ..., number -1.

This is a collective operation.

GA_DESTROY_MUTEXES

int GA_Destroy_mutexes()

Destroys the set of mutexes created with ga_create mutexes. Returns 0 if the operation succeeded
or 1 when failed.

This is a collective operation.

GA_LOCK

void GA_Lock(int mutex)
mutex - mutex object id [input]

Locks a mutex object identified by the mutex number. It is a fatal error for a process to attempt to
lock a mutex which was already locked by this process.

GA_UNLOCK

void GA_Unlock(int mutex)
mutex - mutex object id [input]

Unlocks a mutex object identified by the mutex number. It is a fatal error for a process to attempt
to unlock a mutex which has not been locked by this process.

GA_NODEID

int GA_Nodeid()

Returns the GA process id (0, ..., ga_Nnodes()-1) of the requesting compute process.
This operation is local.

GA_NNODES

int GA_Nnodes()

Returns the number of the GA compute (user) processes.
This operation is local.

GA_GEMM

void GA_Dgemm(char ta, char tb, int m, int n, int k, double alpha,
int g_a, int g_b, double beta, int g _c)

void GA_Sgemm(char ta, char tb, int m, int n, int k, float alpha,
int g_a, int g_b, float beta, int g_c)

void GA_Zgemm(char ta, char tb, int m, int n, int k, DoubleComplex alpha,
int g_a, int g_b, DoubleComplex beta, int g _c)

ga, gb, - handles to input arrays [input]
gc - handles to output array [output]
ta, tb - transpose operators [input]
m - number of rows of op(A) and of matrix C [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

n - number of columns of op(B) and of matrix C [input]
k - number of columns of op(A) and rows of matrix op(B) [input]
alpha, beta - scale factors [input]
Performs one of the matrix-matrix operations:
C := alpha*op(A)*op(B) + beta*C,
where op(X) is one of
op(X) =X or op(X) = X',

alpha and beta are scalars, and A, B and C are matrices, with op(A) an m by k matrix, op(B) a k
by n matrix and C an m by n matrix.

On entry, transa specifies the form of op(A) to be used in the matrix multiplication as follows:
ta='N'or 'n', op(A) =A.
ta="T'or't, op(A)=A"

This is a collective operation.

GA_COPY PATCH

void NGA_Copy_patch(char *trans, int g_a, int alo[], int ahi[],
int g_b, int blo[], int bhi[])

trans - transpose operator [input]
ga, gb - array handles [input]
alo[], ahi[] - g_a patch coordinates [input]
blo[], bhi[] - g_b patch coordinates [input]

Copies elements in a patch of one array into another one. The patches of arrays may be of different
shapes but must have the same number of elements. Patches must be nonoverlapping (if g a=g_b).

trans = 'N' or 'n' means that the transpose operator should not be applied.
trans = 'T" or 't' means that transpose operator should be applied.

This is a collective operation.

GA_DOT_PATCH

double NGA_Ddot_patch(int g_a, char ta, int alo[], int ahi[],
int g_b, char tb, int blo[], int bhi[])
long NGA_Idot_patch(int g_a, char ta, int alo[], int ahi[],
int g_b, char tb, int blo[], int bhi[])
DoubleComplex NGA_Zdot_patch(int g_a, char ta, int alo[], int ahi[],
int g_b, char tb, int blo[], int bhi[])

ga,gb - array handles [input]
alo[], ahi[] - g_a patch coordinates [input]
blo[], bhi[] - g_b patch coordinates [input]
ta, tb - transpose flags [input]

Computes the element-wise dot product of the two (possibly transposed) patches which must be of
the same type and have the same number of elements.

This is a collective operation.

GA_MATMUL_PATCH

void GA_Matmul_patch(char transa, char transb, void* alpha, void *beta,
int g_a, int ailo, int aihi, int ajlo, int ajhi,
int g_b, int bilo, int bihi, int bjlo, int bjhi,
int g_c, int cilo, int cihi, int cjlo, int cjhi)

ga,gb, gc array handles [input]
ailo, aihi, ajlo, ajhi patch of g a [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

bilo, bihi, bjlo, bjhi patch of g b [input]

cilo, cihi, cjlo, cjhi patch of g ¢ [input]
alpha, beta scale factors [input]
transa, transb transpose operators [input]

ga_matmul patch is a patch version of ga_dgemm:

Cl[cilo:cihi,cjlo:cjhi] := alpha* AA[ailo:aihi,ajlo:ajhi] *
BB[bilo:bihi,bjlo:bjhi]) + beta*C[cilo:cihi,cjlo:cjhil],

where AA = op(A), BB = op(B), and op(X) is one of
op(X) =X or op(X) = X',

Valid values for transpose arguments: 'n', 'N', 't', 'T". It works for both double and DoubleComplex
data tape.

This is a collective operation.

NGA_MATMUL_PATCH

void NGA_Matmul_patch(char transa, char transb, void* alpha, void *beta,
int g_a, int alo[], int ahi[],
int g_b, int blo[], int bhi[],
int g_c, int clo[], int chi[])

ga, gb, gc array handles [input]
alo, ahi patch of g a [input]
blo, bhi patch of g b [input]
clo, chi patch of g ¢ [input]
alpha, beta scale factors [input]
transa, transb transpose operators [input]

nga_matmul_patch is a n-dimensional patch version of ga_dgemm:

Clclo[]l:chi[]l] := alpha* AA[alo[]l:ahi[]] *
BB[blo[]:bhi[]]) + beta*C[clo[]:chi[]],

where AA = op(A), BB = op(B), and op(X) is one of
op(X) =X or op(X) = X',

Valid values for transpose arguments: 'n', ‘N, 't', 'T". It works for both double and DoubleComplex
data tape.

This is a collective operation.

GA_ADD PATCH

void NGA_Add_patch (void *alpha, int g_a, int alo[], int ahi[],
void *beta, int g_b, int blo[], int bhi[],
int g_c, int clo[], int chi[])

ga,gb, gc array handles [input]
alo[], ahi[] patch of g a [input]
blo[], bhi[] patch of g b [input]
clo[], chi[] patch of g c [input]
alpha, beta scale factors [input]

Patches of arrays (which must have the same number of elements) are added together element-
wise.

c[I[1=alpha*a[]l]+ beta*b[I[].

This is a collective operation.

GA_FILL_PATCH

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

void NGA_Fill_patch (int g_a, int lo[], int hi[], void *val)

g a array handles [input]
lo[], hi[] patch of g a [input]
val value to fill [input]

Fill the patch of g a with value of 'val'

This is a collective operation.

GA_ZERO_PATCH

void NGA_Zero_patch (int g_a, int lo[], int hi[])

g a array handles [input]
lo[], hi[] patch of g a [input]

Set all the elements in the patch to zero.

This is a collective operation.

GA_SCALE_PATCH

void NGA_Scale_patch (int g_a, int lo[], int hi[], void *val)

g a array handles [input]
lo[], hi[] patch of g a [input]
val scale factor [input]

Scale an array by the factor 'val'

This is a collective operation.

GA_BRDCST
void GA Brdcst(void *buf, int lenbuf, int root)
lenbuf - length of buffer (bytes) [input]
buf[lenbuf] - data [input/output]
root - root process [input]

Broadcast from process root to all other processes a message of length lenbuf.

This is operation is provided only for convenience purposes: it is available regardless of the
message-passing library that GA is running with.

This is a collective operation.

GA_DGOP
void GA_Dgop(double x[], int n, char *op)
n - number of elements [input]
x[n] - array of elements [input/output]
op - operator [input]

Double Global OPeration.

X(1:N) is a vector present on each process. DGOP 'sums' elements of X accross all nodes using the
commutative operator OP. The result is broadcast to all nodes. Supported operations include '+',
*' 'max’, 'min’, 'absmax’, ‘absmin'. The use of lowerecase for operators is necessary.

This is operation is provided only for convenience purposes: it is available regardless of the
message-passing library that GA is running with.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

This is a collective operation.

GA_IGOP
void GA_Igop(long x[], int n, char *op)
n - number of elements [input]
x[n] - array of elements [input/output]
op - operator [input]

Integer Global OPeration. The integer (more precisely long) version of ga_dgop described above,
also include the bitwise OR operation.

This is operation is provided only for convenience purposes: it is available regardless of the
message-passing library that GA is running with.

This is a collective operation.

GA_LGOP
void GA_Lgop(long x[], int n, char *op)
n - number of elements [input]
x[n] - array of elements [input/output]
op - operator [input]

Long Global OPeration. The long version of ga_dgop described above, also include the bitwise OR
operation.

This is operation is provided only for convenience purposes: it is available regardless of the
message-passing library that GA is running with.

This is a collective operation.

GA_CLUSTER_NNODES

int GA_Cluster_nnodes()

This functions returns the total number of nodes that the program is running on. On SMP
architectures, this will be less than or equal to the total number of processors.

This is a local operation.

GA_CLUSTER_NODEID

int GA_Cluster_nodeid()

This function returns the node ID of the process. On SMP architectures with more than one
processor per node, several processes may return the same node id.

This is a local operation.

GA_CLUSTER_PROC_NODEID

int GA_Cluster_proc_nodeid(int proc)

This function returns the node ID of the specified process proc. On SMP architectures with more
than one processor per node, several processes may return the same node id.

This is a local operation.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

GA_CLUSTER_NPROCS

int GA_Cluster_nprocs(int inode)
inode [input]
This function returns the number of processors available on node inode.

This is a local operation.

GA_CLUSTER_PROCID

int GA_Cluster_procid(int inode, int iproc)
inode,iproc [input]

This function returns the processor id associated with node inode and the local processor id iproc.
If node inode has N processors, then the value of iproc lies between 0 and N-1.

This is a local operation.

GA_DIAG
void GA_Diag(int g_a, int g_s, int g_v, void *eval)
g a - Matrix to diagonalize [input]
g.s - Metric [input]
gV - Global matrix to return evecs [output]
eval - Local array to return evals [output]

Solve the generalized eigen-value problem returning all eigen-vectors and values in ascending
order. The input matrices are not overwritten or destroyed.

This is a collective operation.

GA_DIAG_REUSE

void GA_Diag_reuse(int control, int g_a, int g_s, int g_v, void *eval)

control - Control flag [input]
g a - Matrix to diagonalize [input]
g.s - Metric [input]
gV - Global matrix to return evecs [output]
eval - Local array to return evals [output]

Solve the generalized eigen-value problem returning all eigen-vectors and values in ascending
order. Recommended for REPEATED calls if g s is unchanged. Values of the control flag:

value action/purpose

0 indicates first call to the eigensolver
>0 consecutive calls (reuses factored g_s)
<0 only erases factorized g_s; g v and eval unchanged

(should be called after previous use if another
eigenproblem, i.e., different g a and g s, is to
be solved)

The input matrices are not destroyed.

This is a collective operation.

GA_DIAG_STD

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

void GA_Diag_std(int g_a, int g_v, void *eval)

g a - Matrix to diagonalize [input]
g_v - Global matrix to return evecs [output]
eval - Local array to return evals [output]

Solve the standard (non-generalized) eigenvalue problem returning all eigenvectors and values in
the ascending order. The input matrix is neither overwritten nor destroyed.

This is a collective operation.

GA_LLT_SOLVE

int GA_Llt_solve(int g_a, int g_b)

g a - coefficient matrix [input]
g b - rhs/solution matrix [output]
Solves a system of linear equations
A*X =B

using the Cholesky factorization of an NxN double precision symmetric positive definite matrix A
(epresented by handle g a). On successful exit B will contain the solution X.

It returns:

= 0 : successful exit

> 0 : the leading minor of this order is not positive
definite and the factorization could
not be completed

This is a collective operation.

GA_LU SOLVE

void GA_Lu_solve(char trans, int g_a, int g_b)

trans - transpose or not transpose [input]
g a - coefficient matrix [input]
gb - rhs/solution matrix [output]

Solve the system of linear equations op(A)X = B based on the LU factorization.

op(A) = A or A' depending on the parameter trans:
trans = 'N' or 'n' means that the transpose operator should not be applied.
trans = 'T' or 't' means that the transpose operator should be applied.

Matrix A is a general real matrix. Matrix B contains possibly multiple rhs vectors. The array
associated with the handle g b is overwritten by the solution matrix X.

This is a collective operation.

GA_SOLVE
int GA_solve(int g_a, int g_b)
g a - coefficient matrix [input]
gb - rhs/solution matrix [output]

Solves a system of linear equations

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

A*X =8B

It first will call the Cholesky factorization routine and, if sucessfully, will solve the system with the
Cholesky solver. If Cholesky will be not be able to factorize A, then it will call the LU factorization
routine and will solve the system with forward/backward substitution. On exit B will contain the
solution X.

It returns

= 0 : Cholesky factoriztion was succesful
> 0 : the leading minor of this order
is not positive definite, Cholesky factorization
could not be completed and LU factoriztion was used

This is a collective operation.

GA_SPD _INVERT

int GA_Spd_invert(int g_a)

g a - matrix [input/output]

It computes the inverse of a double precision using the Cholesky factorization of a NxN double
precision symmetric positive definite matrix A stored in the global array represented by g a. On
successful exit, A will contain the inverse.

It returns

= 0 : successful exit
> 0 : the leading minor of this order is not positive
definite and the factorization could not be completed
< 0 : it returns the index i of the (i,i)
element of the factor L/U that is zero and
the inverse could not be computed

This is a collective operation.

GA_SELECT_ELEM

void NGA_Select_elem(int g_a, char *op, void* val, int index[])

g a - array handle Control [input]
op - operator {"min", "max"} [input]
val - address where value should be stored [output]
index[ndim] - array index for the selected element [output]

Returns the value and index for an element that is selected by the specified operator in a global
array corresponding to g a handle.
This is a collective operation.

GA_SUMMARIZE

void GA_Summarize(int verbose)

verbose - If true print distribution info [input]

Prints info about allocated arrays.

GA_SYMMETRIZE

void GA_Symmetrize(int g_a)

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

g a [input]

Symmetrizes matrix A represented with handle g a: A:= .5 * (A+A").

This is a collective operation.

GA_TRANSPOSE

void GA_Transpose(int g_a, int g_b)

g a - original matrix [input]
gb - solution matrix [output]

Transposes a matrix: B = A', where A and B are represented by handles g a and g b.

This is a collective operation.

GA_ABS_VALUE

void GA_Abs_value(int g_a)
g a - array handle [input]

Take element-wise absolute value of the array.
This is a collective operation.

GA_ABS VALUE_PATCH

void GA_Abs_value_patch(int g_a, int lo[], int hi[])

g a - array handle [input]
lo[], hi[] - g a patch coordinates [input]

Take element-wise absolute value of the patch.
This is a collective operation.

GA_ADD_CONSTANT

void GA_Add_constant(int g_a, void *alpha)

g_a - array handle [input]
double/complex/int/long/float *alpha - added value [input]

Add the constant pointed by alpha to each element of the array.
This is a collective operation.

GA_ADD_CONSTANT_PATCH

void GA_Add_constant_patch(int g_a, int lo[], int hi[], void *alpha)

g a - array handle [input]
lo[], hi[] - patch coordinates [input]
double/complex/int/long/float *alpha - added value [input]

Add the constant pointed by alpha to each element of the patch.
This is a collective operation.

GA_RECIP

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

void GA_Recip(int g_a)
ga - array handle [input]

Take element-wise reciprocal of the array.
This is a collective operation.

GA_RECIP_PATCH

void GA_Recip_patch(int g_a, int lo[], int hi[])

g a - array handle [input]
lo[], hi[] - patch coordinates [input]

Take element-wise reciprocal of the patch.
This is a collective operation.

GA_ELEM_MULTIPLY
void GA_Elem_multiply(int g_a, int g_b, int g_c)

ga, gb - array handles [input]
gc - array handle [output]

Computes the element-wise product of the two arrays
which must be of the same types and same number of
elements. For two-dimensional arrays,

c@i, j) = a(j)*b()

The result (c) may replace one of the input arrays (a/b).
This is a collective operation.

GA_ELEM_MULTIPLY PATCH

void GA_Elem multiply_patch(int g_a, int alo[], int ahi[], int g_b, int blo[], int bhi[],
int g_c, int clo[], int chi[])

ga, gb - array handles [input]
gc - array handle [output]
alo[], ahi[] - g_a patch coordinates [input]
blo[], bhi[] - g_b patch coordinates [input]
clo[], chi[] - g_c patch coordinates [output]

Computes the element-wise product of the two patches
which must be of the same types and same number of
elements. For two-dimensional arrays,

c(i, j) = a(Lj)*b(ij)

The result (c) may replace one of the input arrays (a/b).
This is a collective operation.

GA_ELEM _DIVIDE
void GA_Elem_divide(int g_a, int g_b, int g_c)

ga, gb - array handles [input]
gc - array handle [output]

Computes the element-wise quotient of the two arrays
which must be of the same types and same number of
elements. For two-dimensional arrays,

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

c(i, j) = a(i,j)/bj)

The result (c) may replace one of the input arrays (a/b). If one of the elements of array g b is zero,
the quotient for the element of g c will be set to GA_ NEGATIVE INFINITY.

This is a collective operation.

GA_ELEM_DIVIDE_PATCH

void GA_Elem_divide_patch(int g_a, int alo[], int ahi[], int g_b, int blo[], int bhi[],
int g_c, int clo[], int chi[])

ga, gb - array handles [input]
gc - array handle [output]
alo[], ahi[] - g_a patch coordinates [input]
blo[], bhi[] - g_b patch coordinates [input]
clo[], chi[] - g_c patch coordinates [output]

Computes the element-wise quotient of the two patches
which must be of the same types and same number of
elements. For two-dimensional arrays,

c(, j) = a(j)/b(j)

The result (c) may replace one of the input arrays (a/b).
This is a collective operation.

GA_ELEM_MAXIMUM
void GA_Elem_maximum(int g_a, int g_b, int g_c)

ga, gb - array handles [input]
gc - array handle [output]

Computes the element-wise maximum of the two arrays
which must be of the same types and same number of
elements. For two dimensional arrays,

c(i, j) = max{a(ij), b(ij)}

The result (c) may replace one of the input arrays (a/b).
This is a collective operation.

GA_ELEM_MAXIMUM_PATCH

void GA_Elem_maximum_patch(int g_a, int alo[], int ahi[], int g_b, int blo[], int bhi[],
int g_c, int clo[], int chi[])

ga, gb - array handles [input]
gc - array handle [output]
alo[], ahi[] - g_a patch coordinates [input]
blo[], bhi[] - g_b patch coordinates [input]
clo[], chi[] - g_c patch coordinates [output]

Computes the element-wise maximum of the two patches
which must be of the same types and same number of
elements. For two-dimensional of noncomplex arrays,

c(i, j) = max{a(,j), b(ij)}

If the data type is complex, then
c(i, j).real = max{ |a(i,j)|, |b(i,j)|} while c(i,j).image = 0.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

The result (c) may replace one of the input arrays (a/b).
This is a collective operation.

GA_ELEM_MINIMUM
void GA_Elem_minimum(int g_a, int g_b, int g_c)

ga,gb - array handles [input]
gc - array handle [output]

Computes the element-wise minimum of the two arrays
which must be of the same types and same number of
elements. For two dimensional arrays,

c(i, j) = min{a(,j), b(ij)}

The result (c) may replace one of the input arrays (a/b).
This is a collective operation.

GA_ELEM_MINIMUM_PATCH

void GA_Elem_minimum_patch(int g_a, int alo[], int ahi[], int g_b, int blo[], int bhi[],
int g_c, int clo[], int chi[])

ga, gb - array handles [input]
gc - array handle [output]
alo[], ahi[] - g_a patch coordinates [input]
blo[], bhi[] - g_b patch coordinates [input]
clo[], chi[] - g_c patch coordinates [output]

Computes the element-wise minimum of the two patches
which must be of the same types and same number of
elements. For two-dimensional of noncomplex arrays,

c@, j) = min{a(,j), b(ij)}

If the data type is complex, then
c(i, j).real = min{ |a(ij)|, |b(ij)|} while c(i,j).image = 0.

The result (c) may replace one of the input arrays (a/b).
This is a collective operation.

GA_SHIFT _DIAGONAL
void GA_Shift_diagonal(int g_a, void *c)

g a - array handle [input]
double/complex/int/long/float - shift value [input]

Adds this constant to the diagonal elements of the matrix.
This is a collective operation.

GA_SET_DIAGONAL

void GA_Set_diagonal(int g_a, int g_v)
ga, gv - array handles [input]

Sets the diagonal elements of this matrix g a with the elements of the vector g v.
This is a collective operation.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

GA_ZERO DIAGONAL

void GA_Zero_diagonal(int g_a)
ga - array handle [input]

Sets the diagonal elements of this matrix g a with zeros.
This is a collective operation.

GA_ADD DIAGONAL

void GA_Add_diagonal(int g_a, int g_v)
ga, gv - array handles [input]

Adds the elements of the vector g v to the diagonal of this matrix g a.
This is a collective operation.

GA_GET _DIAG

void GA_Get_diag(int g_a, int g_v)
ga, gv - array handles [input]

Inserts the diagonal elements of this matrix g _a into the vector g v.
This is a collective operation.

GA_SCALE_ROWS

void GA_Scale_rows(int g_a, int g_v)
ga, gv - array handles [input]

Scales the rows of this matrix g_a using the vector g _v.
This is a collective operation.

GA_SCALE_COLS

void GA_Scale_cols(int g_a, int g_v)
ga, gv - array handles [input]

Scales the columns of this matrix g a using the vector g v.
This is a collective operation.

GA_NORM1
void GA_norml(int g_a, double *nm)
g a - array handle [input]
nm - matrix/vector 1-norm value [output]

Computes the 1-norm of the matrix or vector g a.
This is a collective operation.

GA_NORM_INFINITY

void GA_Norm_infinity(int g_a, double *nm)

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

g a - array handle [input]
nm - matrix/vector infinity-norm value [output]

Computes the 1-norm of the matrix or vector g a.
This is a collective operation.

GA_MEDIAN
void GA_Median(int g_a, int g_b, int g_c, int g_m)

ga, gb, gc - array handles [input]
gm - array handle [output]

Computes the componentwise Median of three arrays g a, g b, and g c, and stores the result in this
array g m. The result (m) may replace one of the input arrays (a/b/c).
This is a collective operation.

GA_MEDIAN PATCH

void GA_Median_patch(int g_a, int alo[], int ahi[], int g_b, int blo[], int bhi[],
int g_c, int clo[], int chi[], int g_m, int mlo[], int mhi[])

ga, gb, gc - array handles [input]
gm - array handle [output]
alo[], ahi[] - g_a patch coordinates [input]
blo[], bhi[] - g_b patch coordinates [input]
clo[], chi[] - g_c patch coordinates [input]
mlo[], mhi[] - g_m patch coordinates [output]

Computes the componentwise Median of three patches g a, g b, and g c, and stores the result in
this patch g m. The result (m) may replace one of the input patches (a/b/c).
This is a collective operation.

GA_STEP_MAX

void GA_Step_max(int g_a, int g_b, double *step)

ga, gb - array handles where g b is step direction [input]
step - maximum step size [output]

Calculates the largest multiple of a vector g b that can be added to this vector g _a while keeping
each element of this vector non-negative.
This is a collective operation.

GA_STEP_MAX2

void GA_Step_max2(int g_xx, int g_vv, int g_xx11, int g_xxuu, double * step2)

g XX - array handle [input]
g_vv - step direction array handle [input]
g xx1l - lower bounds array handle [input]
g_xxuu - upper bounds array handle [input]
step2 - maximum step size [output]

Calculates the largest step size that should be used in a projected bound line search.
This is a collective operation.

GA_STEP_MAX_PATCH

void GA_Step_max_patch(int g_a, int alo[], int ahi[], int g_b, blo[], bhi[],
double *step)

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

ga, gb - array handles where g b is step direction [input]
step - the maximum step [output]

Calculates the largest multiple of a vector g b that can be added to this vector g _a while keeping
each element of this vector non-negative.
This is a collective operation.

GA_STEP_MAX2 PATCH

void GA_Step_max2_patch(int g_xx, int xxlo[], int xxhi[], g_vv, int vvlo[], int vvhi[],
int g_xx11, int xx11lo[], int xx1lhi[], int g_xxuu,
int xxuulo[], int xxuuhi[], double *step2)

g_XXx - array handle [input]
g vv - step direction array handle [input]
g xx1l - lower bounds array handle [input]
g_XXuu - upper bounds array handle [input]
step2 - maximum step size [output]
xxlo[], xxhi[] - g xx patch coordinates [input]
vvlo[], vvhi[] - g vv patch coordinates [input]
xx1llo[], xx1lhi[] - g xx1ll patch coordinates [input]
xxuulo[], xxuuhi[] - g _xxuu patch coordinates [output]

Calculates the largest step size that should be used in a projected bound line search.
This is a collective operation.

GA_PGROUP_GET DEFAULT

int GA_Pgroup_get_default()

This function will return a handle to the default processor group ,which can then be used to create
a global array using one of the NGA create * config or GA Set pgroup calls.

This is a local operation.

GA_PGROUP_GET _MIRROR

int GA_Pgroup_get_mirror()

This function will return a handle to the mirrored processor group, which can then be used to
create a global array using one of the NGA create * config or GA Set pgroup calls.

This is a local operation.

GA_PGROUP_GET WORLD

int GA_Pgroup_get_world()

This function will return a handle to the world processor group, which can then be used to create a
global array using one of the NGA create * config or GA_Set pgroup calls.

This is a local operation.

GA_PGROUP_SYNC

void GA_Pgroup_sync(int p_handle)
p_handle processor group handle [input]

This operation executes a synchronization group across the processors in the processor group
specified by p _handle. Nodes outside this group are unaffected.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

http://www.emsl.pnl.gov/docs/global/c nga ops.html

This is a collective operation on the processor group specified by p_handle.

GA_PGROUP_BRDCST

void GA_Pgroup_brdcst(int p_handle, void* buf, int lenbuf, int root)

p_handle processor group handle [input]
buf pointer to buffer containing data [input/output]
lenbuf length of data (in bytes) [input]
root processor sending message [input]

Broadcast data from processor specified by root to all other processors in the processor group
specified by p_handle. The length of the message in bytes is specified by lenbuf. The initial and
broadcasted data can be found in the buffer specified by the pointer buf.

This is a collective operation on the processor group specified by p_handle.

GA_PGROUP_DGOP

void GA_Pgroup_dgop(int p_handle, double buf*, int n, char* op)

p_handle processor group handle [input]
buf buffer containing data [input/output]
n number of elements in x [input]
op operation to be performed [input]

buf[n] is a double precision array present on each processor in the processor group p_handle. The
GA_Pgroup dgop 'sums' all elements in buf[n] across all processors in the group specified by p_
handle using the commutative operation specified by the character string op. The result is

broadcast to all processor in p_handle. Allowed strings are "+", "*", "max", "min", "absmax",
"absmin". The use of lowerecase for operators is necessary.

This is a collective operation on the processor group specifed by p_handle.

GA_PGROUP_IGOP

void GA_Pgroup_igop(int p_handle, double buf*, int n, char* op)

p_handle processor group handle [input]
buf buffer containing data [input/output]
n number of elements in x [input]
op operation to be performed [input]

buf[n] is an integer array present on each processor in the processor group p_handle. The GA_
Pgroup igop 'sums' all elements in buf[n] across all processors in the group specified by p_handle
using the commutative operation specified by the character string op. The result is broadcast to all

processor in p_handle. Allowed strings are "+", "*", "max", "min", "absmax", "absmin". The use of
lowerecase for operators is necessary.

This is a collective operation on the processor group specifed by p_handle.

GA_PGROUP_LGOP

void GA_Pgroup_lgop(int p_handle, double buf*, int n, char* op)

p_handle processor group handle [input]
buf buffer containing data [input/output]
n number of elements in x [input]
op operation to be performed [input]

bufl[n] is a long integer array present on each processor in the processor group p_handle. The GA _
Pgroup lgop 'sums' all elements in buf[n] across all processors in the group specified by p_handle
using the commutative operation specified by the character string op. The result is broadcast to all

Tue 31 Mar 2009 04:31:31 PM PDT

processor in p_handle. Allowed strings are "+", "*", "max", "min", "absmax", "absmin". The use of
lowerecase for operators is necessary.

This is a collective operation on the processor group specifed by p _handle.

GA_PGROUP_FGOP

void GA_Pgroup_lgop(int p_handle, double buf*, int n, char* op)

p_handle processor group handle [input]
buf buffer containing data [input/output]
n number of elements in x [input]
op operation to be performed [input]

bufl[n] is a single precision array present on each processor in the processor group p_handle. The
GA _Pgroup fgop 'sums' all elements in buf[n] across all processors in the group specified by p_
handle using the commutative operation specified by the character string op. The result is

broadcast to all processor in p_handle. Allowed strings are "+", "*", "max", "min", "absmax",
"absmin". The use of lowerecase for operators is necessary.

This is a collective operation on the processor group specifed by p_handle.

GA_PGROUP_NNODES

int GA_Pgroup_nnodes(int p_handle)
p_handle processor group handle [input]

This function returns the number of processors contained in the group specified by p _handle.

This is a local local operation.

GA_PGROUP_NODEID

int GA_Pgroup_nodeid(int p_handle)
p_handle processor group handle [input]

This function returns the relative index of the processor in the processor group specified by p_
handle. This index will generally differ from the absolute processor index returned by GA Nodeid if
the processor group is not the world group.

This is a local operation.

GA_MERGE_MIRRORED
int GA_Merge_mirrored(int g_a)
g a array handles [input]

This subroutine merges mirrored arrays by adding the contents of each array across nodes. The
result is that the each mirrored copy of the array represented by g a is the sum of the individual
arrays before the merge operation. After the merge, all mirrored arrays are equal.

This is a collective operation.

GA_IS_MIRRORED
int GA_Is_mirrored(int g_a)

g a array handle [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

This subroutine checks if the array is mirrored array or not. Returns 1 if it is a mirrored array, else
returns 0.

This is a local operation.

GA_MERGE_DISTR_PATCH

int NGA_Merge_distr_patch(int g_a, int alo[], int ahi[], int g_b, int blo[], int bhi[])

ga,gb - array handles [input]
alo[], ahi[] - g a patch coordinates [input]
blo[], bhi[] - g b patch coordinates [input]

This function merges all copies of a patch of a mirrored array (g_a) into a patch in a distributed
array (g_b).

This is a collective operation.

GA_NBGET

void NGA_NbGet(int g_a, int lo[], int hi[], void* buf, int 1d[], ga_nbhdl_t* nbhandle)

g a - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
buf - pointer to the local buffer array where the data goes [output]
ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]
nbhandle - pointer to the non-blocking request handle [input]

Non-blocking version of the blocking get operation. The get operation can be completed locally by
making a call to the wait (e.g.NGA_NbWait) routine.

This is a non-blocking one-sided operation.

GA_NBPUT

void NGA_NbPut(int g_a, int lo[], int hi[], void* buf, int 1d[], ga_nbhdl_t* nbhandle)

g a - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
buf - pointer to the local buffer array where the data is [input]
ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]
nbhandle - pointer to the non-blocking request handle [input]

Non-blocking version of the blocking put operation. The put operation can be completed locally by
making a call to the wait (e.g.NGA_NbWait) routine.

This is a non-blocking one-sided operation.

GA_NBACC

void NGA_NbAcc(int g_a, int lo[], int hi[], void* buf, int 1d[], void *alpha,
ga_nbhdl_t* nbhandle)

ga - global array handle [input]
ndim - number of dimensions of the global array

lo[ndim] - array of starting indices for global array section [input]
hi[ndim] - array of ending indices for global array section [input]
buf - pointer to the local buffer array where the data is [input]

ld[ndim-1] - array specifying leading dimensions/strides/extents for buffer array [input]

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

double/DoubleComplex/long *alpha - scale factor [input]
nbhandle - pointer to the non-blocking request handle [input]

Non-blocking version of the blocking accumulate operation. The accumulate operation can be
completed locally by making a call to the wait (e.g.NGA_NbWait) routine.

This is a non-blocking one-sided operation.

GA_NBWAIT

void NGA_NbWait(ga_nbhdl_t* nbhandle)
nbhandle - pointer to the non-blocking request handle [input]

This function completes a non-blocking one-sided operation locally. Waiting on a nonblocking put
or an accumulate operation assures that data was injected into the network and the user buffer can
be now be reused. Completing a get operation assures data has arrived into the user memory and is
ready for use. Wait operation ensures only local completion. Unlike their blocking counterparts, the
nonblocking operations are not ordered with respect to the destination. Performance being one
reason, the other reason is that by ensuring ordering we incur additional and possibly unnecessary
overhead on applications that do not require their operations to be ordered. For cases where
ordering is necessary, it can be done by calling a fence operation. The fence operation is provided
to the user to confirm remote completion if needed.

GA_WTIME

double GA Wtime()

This function return a wall (or elapsed) time on the calling processor. Returns time in seconds
representing elapsed wall-clock time since an arbitrary time in the past. Example:

double starttime, endtime;
starttime = GA Wtime();
. code snippet to be timed
endtime = GA Wtime();
printf("Time taken = %lf seconds\n", endtime-starttime);

This is a local operation.
This function is only available in release 4.1 or greater.

GA_SET DEBUG

void GA_Set_debug(int dbg)
dbg - value to set internal flag [input]

This function sets an internal flag in the GA library to either true or false. The value of this flag can
be recovered at any time using the GA_Get_debug function. The flag is set to false when the the GA
library is initialized. This can be useful in a number of debugging situations, especially when
examining the behavior of routines that are called in multiple locations in a code.

This is a local operation.

GA_GET DEBUG

int GA_Get_debug()

This function returns the value of an internal flag in the GA library whose value can be set using
the GA_Set debug subroutine.

This is a local operation.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

http://www.emsl.pnl.gov/docs/global/c nga ops.html

GA_PATCH_ENUM

void GA_Patch_enum(int g_a, int lo, int hi, int istart, int inc)

g a - array handle [input]
lo, hi - patch coordinates [input]
istart - starting value of enumeration [input]
inc - increment value [input]

This subroutine enumerates the values of an array between elements lo and hi starting with the
value istart and incrementing each subsequent value by inc. This operation is only applicable to 1-
dimensional arrays. An example of its use is shown below:

GA Patch_enum(g_a, 1, n, 7, 2);
ga: 7 91113 15 17 19 21 23 ...

This is a collective operation.

GA_SCAN ADD

void GA_Scan_add(int g_src, int g_dest, int g_mask, int lo, int hi, int excl)

g _src - handle for source array [input]
g_dest - handle for destination array [output]
g mask - handle for integer array representing mask [input]
lo, hi, - low and high values of range on which operation

is performed [input]
excl - value to signify if masked values are included in

in add [input]

This operation will add successive elements in a source vector g_src and put the results in a
destination vector g dest. The addition will restart based on the values of the integer mask vector
g_mask. The scan is performed within the range specified by the integer values lo and hi. Note that
this operation can only be applied to 1-dimensional arrays. The excl flag determines whether the
sum starts with the value in the source vector corresponding to the location of a 1 in the mask
vector (excl=0) or whether the first value is set equal to 0 (excl=1). Some examples of this
operation are given below.

GA Scan add(g src, g dest, g mask, 1, n, 0);

gmask: 1 @ 06 6 @ 6 1 06 1 ©# 06 1 @ 06 1 1 0
g src: 1 2 3 45 6 7 8 910 11 12 13 14 15 16 17
gdest: 1 3 61016 21 7 15 9 19 30 12 25 39 15 16 33
GA_Scan_add(g _src, g dest, g mask, 1, n, 1);

gmask: 1 @6 06 6 6 6 1 06 1 @8 06 1 6 06 1 1 0
g_src: 1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17
gdest: © 1 3 61015 06 7 0 919 01225 0 016

This is a collective operation.

GA_SCAN_COPY

void GA_Scan_copy(int g_src, int g_dest, int g_mask, int lo, int hi)

g _src - handle for source array [input]
g _dest - handle for destination array [output]
g _mask - handle for integer array representing mask [input]
lo, hi, - low and high values of range on which operation

is performed [input]

This subroutine does a segmented scan-copy of values in the source array g _src into a destination
array g _dest with segments defined by values in the integer mask array g mask. The scan-copy
operation is only applied to the range between the lo and hi indices. This operation is restriced to 1-
dimensional arrays. The resulting destination array will consist of segments of consecutive
elements with the same value. An example is shown below

GA Scan copy(g src, g dest, g mask, 1, n);
g_mask: 1 006 6 6 061 610606 6 1 06 06 1 10

Tue 31 Mar 2009 04:31:31 PM PDT

http://www.emsl.pnl.gov/docs/global/c nga ops.html

10 11 12 13 14 15 16 17

g _src: 0
9 912 12 12 15 16 16

1 2 3 456 7 8 9
g_dest: 1111117 79

This is a collective operation.

GA_PACK

void GA_Pack(int g_src, int g_dest, int g_mask, int lo, int hi, int *icount)

g_src - handle for source array [input]
g _dest - handle for destination array [output]
g_mask - handle for integer array representing mask [input]
lo, hi, - low and high values of range on which operation

is performed
integer - number of values in compressed array [output]

The pack subroutine is designed to compress the values in the source vector g src into a smaller
destination array g_dest based on the values in an integer mask array g mask. The values lo and hi
denote the range of elements that should be compressed and icount is a variable that on output lists
the number of values placed in the compressed array. This operation is the complement of the GA_
Unpack operation. An example is shown below

GA Pack(g src, g dest, g mask, 1, n, &icount);
g_mask: 1 0 06 6 6 061 6106 66 1 06 06 1 10

g src: 1 2 3 45 6 7 8 910 11 12 13 14 15 16 17
g dest: 1 7 912 15 16
icount: 6

This is a collective operation.

GA_UNPACK
void GA_Unpack(int g_src, int g_dest, int g_mask, int lo, int hi, int *icount)
g _src - handle for source array [input]
g_dest - handle for destination array [output]
g mask - handle for integer array representing mask [input]
lo, hi, - low and high values of range on which operation
is performed
integer - number of values in uncompressed array [output]

The unpack subroutine is designed to expand the values in the source vector g src into a larger
destination array g dest based on the values in an integer mask array g mask. The values lo and hi
denote the range of elements that should be compressed and icount is a variable that on output lists
the number of values placed in the uncompressed array. This operation is the complement of

the GA_Pack operation. An example is shown below

GA_Unpack(g_src, g _dest, g mask, 1, n, &icount);

g src: 1 7 91215 16

g_mask: 1 6 6 686 061061 06 6 10606 6 110
g dest: 1 6 6 6 6 67 6 9 06 012 0 61516 0
icount: 6

This is a collective operation.

GA_LIST NODEID
GA_MPI_COMMUNICATOR

obsolete functions as of release 3.0

Tue 31 Mar 2009 04:31:31 PM PDT

Additional Explanations

Global arrays are distributed array objects supported in a message-passing program through the
GA library calls. They can be created, destroyed and manipulated using a set of GA operations.

Attributes of GA operations

one-sided/independent - accesses shared/remote data without the remote process (data owner)
cooperation -- unlike send/receive operations in MPI

collective - requires all processes to make the call, otherwise the code will hang
local - operation is local to each process and does not require communication
atomic - operation has mutual exclusion built in: concurrent accesses to the
same data will be serialized

non-blocking - Nonblocking operations initiate a communication call and then return

control to the application. A return from a nonblocking operation call indicates a mere initiation of
the data transfer process and the operation can be completed locally by making a call to the wait
(e.g.NGA_NbWait) routine.

Language Interoperability

GA provides C and Fortran interfaces in the same mixed-language program to the same array
objects. Because of the language interoperability, the C interface is influenced by some of the
Fortran conventions. These are the major considerations:

o The set of supported datatypes is limited to double, Integer (defined as int on 32-bit and long
on 64-bit platforms), and DoubleComplex. DoubleComplex is defined as a struct of two
doubles holding real and imaginary parts of complex numbers.

e The underlying data layout uses Fortran convention (first array dimension changes first). This
requires the GA C interface to swap order of dimensions and subscripts in function arguments
passed through the C interface to be consistent with the C view of multidimensional array
layout and indexing. This conversion makes GA multidimensional arrays look consistent with
the C conventions for data layout of local multidimensional arrays at small extra cost (a
fraction of a microsecond) associated with copying arguments. However, the conversion is
avoided by building the package with USE_FAPI flag set which would change the array
addressing/layout conventions to follow Fortran.

Memory Allocation an Usage

GA consumes memory for storing global arrays. The memory is either private to each process or
shared. Local memory is allocated using MA (Memory Allocator library). Any temporary
workspace GA is using comes from a statically allocated internal pool of memory or MA. This
requires MA to be initilized before GA.

Higher-dimensional Array API

All releases of GA <= 2.4 supported only 2-dimensional arrays. Since release 3.0 arrays can have
up to 7 dimensions. This limit can be increased at compile time. For backward compatibility
reasons, the original explicitly 2-dimensional interfaces had to be preserved. Therefore, some GA
operations have two APIs available. They are identified with "GA" or "NGA" prefix that correspond
to either the old 2-dimensional or the new arbitrary(N)-dimensional version, respectively.

Note

This documentation describes the C API available in the version 3.0 (or higher) of GA.

http://www.emsl.pnl.gov/docs/global/c nga ops.html Tue 31 Mar 2009 04:31:31 PM PDT

