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libPC Goals (1-3) 

3 

1. libPC is a library which provides APIs for reading, 
writing, and processing point cloud data of various 
formats.  Additionally, some command line tools 
are provided.  As GDAL is to 2D pixels, libPC is to    
multidimensional points.  

 

2. From a market perspective, libPC is "version 2" of 
libLAS.  The actual code base will be different, 
however, and the APIs will not be compatible. 

 

3. The libPC implementation has high performance, 
yet the API remains flexible.  We recognize that 
these two goals will conflict at times and will weigh 
the tradeoffs pragmatically.  
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libPC Goals (4-6) 

4 

4. The architecture of a libPC-based workflow will be 
a pipeline of connected stages, each stage being 
either a data source (such as a file reader), a filter 
(such as a point thinner), or data sink (such as a   file 
writer). 

 

5. The libPC library will be in C++, but will also include 
a C API and will have SWIG bindings for languages 
like Python and C#. libPC will support    multiple 
platforms, specifically Windows, Linux, and Mac. 

 

6. libPC is open source and is released under a BSD 
license. 
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Pipeline Design 
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Pipeline Design Goals 

 Aimed at: 
 command line apps for data processing 

 secondarily, viewing 
 

 “Readers” and “Writers” 
 Producers/Consumers, Sources/Sinks, … 

 Composition of stages 
 

 Pipeline is static 
 Setup once at run time 

 Then use (read from) repeatedly 
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Key Classes (1) 
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Key Classes (2) 
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Groups of Classes 

 Math 
 Range, Vector, Bounds 

 Schemata 
 Dimension, DimensionLayout, Schema, 

SchemaLayout, PointData 

 Pipeline 
 Header, Stage, Reader, Writer, Filter 

 Other 
 Utils, Signaller, exceptions, Color, Metadata, 

SpatialReference 
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Math  Range<T> 

 A minimum/maximum pair 
 

 Features 

 get/set min/max 

 predicates: equality, overlaps, contains, … 

 clip, grow, scale, … 
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Math  Vector<T> 

 A vector of values, in the mathematical sense 
 

 Features 

 length fixed at ctor 

 element accessors 

 equality testing 
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Math  Bounds<T> 

 A list of Ranges 

 such as an (x,y,z) bounding box 
 

 Features: 

 get/set min/max 

 predicates: equality, empty, contains, overlaps, … 

 grow, clip, ... 
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Schemata  Dimension 

 Strongly typed data field 
 such as “X Position” or “GPS Time” 

 

 Features: 
 field name enum 

 XPosition, GPSTime, ReturnNumber 

 data type enum 
 Int8, …, Uint64, …, double 

 getNumBytes, isSigned, isNumeric, … 

 supports “scale/offset” uint32/float concept 
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Schemata  Schema 

 A set of Dimensions 

 conceptually like a database schema 

 unordered; no associated physical layout 
 

 Features: 

 void addDimension(const Dimension&) 

 const Dimension& getDimension(size_t index) 

 size_t getDimensionIndex(Field field) 
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Schemata  DimensionLayout 

 Represents a Dimension, as physically stored 

 conceptually, an array of raw bytes 

 the schema is overlaid/union’d over that 
 

 Features: 

 getByteOffset()  // starting byte in raw bytes array 

 getPosition()   // index into Dimensions array 
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Schemata  SchemaLayout 

 An ordered list of DimensionLayouts, to 
represent the physical layout on disk 

 

 Features 

 getSchema 

 getByteSize()   // sum of all dimensions 

 getDimensionLayout(size_t index) 
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Pipeline  Header 

 Basic data associated with all stages 

 Number of points, bounds, … 

 

 Features 

 get/set Schema, NumPoints, Bounds, … 

 get/set Metadata, SpatialReference 
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Pipeline  Stage 

 Stage is abstract base class for a pipeline unit 
 for Readers, Writers, Filters 

 

 Features: 
 uint32_t read(PointData&) 

 virtual void readBegin(uint32 numPointsToRead) 

 virtual uint32 readBuffer(PointData&) 

 virtual void readEnd(uint32 numPointsRead) 

 seekToPoint(), getCurrentPosition(), bool atEnd() 

 getHeader() 
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The read() protocol 

 user calls Stage::read(PointData&) 

 user supplies the PointData object 

 this is not virtual, do not override 

 

 read() does this for you: 

 readBegin 

 readBuffer() 

 readEnd 

 you override these in your derived classes 
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Pipeline  Reader 

 Derives from Stage 

 only difference is it supplies code to manage the 
current point number for you 

 

 Features 

 adds m_currentPointNumber 
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Pipeline  Filter 

 Derives from Stage 

 ctor takes a Stage& (the “previous” stage) 

 only difference is it supplies default 
implementations of read functions, etc. 

 

 Features 

 readBegin():  m_prevStage.readBegin() 

… 
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Pipeline  Writer 

 Derived from Filter, designed for file-based 
writers 

 

 Features: 

 write(size_t numPoints) 

 protected writeBegin, writeBuffer, writeEnd 

 get/set ChunkSize 
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The write() protocol 

 User calls write(numPointsToWrite) 
 not virtual 

 writeBegin/Buffer/End are virtual 
 Derived classes provide these 

 write() does this: 
 writeBegin() 
 numChunks = numPoints / chunkSize 
 for each chunk do 

 PointData data(chunkSize) 
 prevStage.readBuffer(data) 
 writeBuffer() 

 writeEnd() 
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Other  Utils 

 Provides a dumping ground for static helper 
functions 

 

 Features: 

 random() 

 compare_epsilon 

 iostream helpers: open/create/close file 

 file helpers: rename, getSize, delete 

 read/writeField<T>(uint8*) 
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Other  Signaller 

 Provides callbacks for progress reporting and 
requesting interrupts during long-running 
pipeline operations 

 class done, but not yet implemented anywhere 

 

 Features 

 virtual void setPercentComplete(double) 

 virtual bool isInterruptRequested() const 
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Other  exceptions 

 Provides some libPC-named exceptions for 
specific error situations 

 

 Features 

 libpc_error    // base class 

 invalid_point_data  

 invalid_format  

 configuration_error  

 not_yet_implemented  
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Other  Color 

 Provides a simple holder for an R,G,B triplet 

 

 Features 

 get/set Red/Green/Blue 

 interpolate(value, rangeMin, rangeMax) 

 // provides a mapping into a color ramp 
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Other  Metadata 

 Provides a holder for an arbitrary array of 
bytes 

 class not yet implemented 
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Other  SpatialReference 

 Provides a holder for some sort of SRS 
representation 

 class not yet implemented 

 will provide WKT, EPSG code, reprojection, etc. 

 likely heavily dependent on LIBPC_HAVE_GDAL 
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Concrete pipeline classes 

 Things derived from Stage 
 

 Readers/Writer (Drivers) 
 LasReader, LasWriter 

 LiblasReader, LiblasWriter 

 OCI 

 FauxReader, FauxWriter 
 

 Filters 
 CacheFilter, ColorFilter, DecimationFilter, CropFilter, 

MosaicFilter 
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Issues 

Some things are still open and need resolution 

 like, this week 
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Issue  Capabilities 

 It would be a Good Thing if some readers could advertise 
certain features 
 I_Support_Spatial_Indexing 
 I_Don’t_Like_Doing_Random_Seeks 
 …? 

 

 Knowing this information would help a pipeline-creator be 
able to omit a filter, for example 

 

 Questions 
 What is the set of capabilities offered? 
 Should they be exposed from Stage? 
 How should they be expressed? 

 Boost-style traits? 
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Issue  PointData Templating 

 The Dimension class uses an enum for the 
data type 

 It is not Dimension<T>, because then there is no 
base class to allow for std::vector<Dimension> 

 plus, virtual function overhead? 

 But PCL does templates, sayeth Hobu 

 Task: give a 5-10 min talk on PCL 

 how/why it is different from libPC 

 what ideas can we adopt? 
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Issue  Sequential or Random? 

 Two worlds 

 LAS (files) present a sequential list of points 

 OCI (queries) present a spatially indexed set of 
points 

 But: 

 Stage::read() is really a sequential/file model 

 

 What can/should we do about this? 
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Issue  Stage Class Hierarchy 

 The naming of classes is a difficult matter 

 It isn't just one of your holiday games 

 

 Reader, Writer, Filter, Producer, Consumer, 
Source, Sink, … 

 

 What is a Writer? 

 The Chipper ain’t one. 

 Should it really be it’s own class? 
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Issue  IsValid? 

 It seemed like a good idea at the time 

 But doesn’t seem useful at all now. 

 Just one more thing for developers to need to 
remember to do 

 The default action goes the wrong way 
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Issue   Miscellany 

 Get rid of header class? (fits into stage) 
 

 Boost equivalents for Range, Vector, etc.? 

 (where are we actually using these?) 
 

 Bit fields in dimensions? 

 Needed for direct mapping to disk only 
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