
LIBPC – DESIGN

Montreal Code Sprint

mpg
Flaxen Geo
15 March 2011

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 1

Contents

 libPC Goals

 Design

 Pipeline Architecture

 The Classes

 Open Issues

2 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

libPC Goals (1-3)

3

1. libPC is a library which provides APIs for reading,
writing, and processing point cloud data of various
formats. Additionally, some command line tools
are provided. As GDAL is to 2D pixels, libPC is to
multidimensional points.

2. From a market perspective, libPC is "version 2" of
libLAS. The actual code base will be different,
however, and the APIs will not be compatible.

3. The libPC implementation has high performance,
yet the API remains flexible. We recognize that
these two goals will conflict at times and will weigh
the tradeoffs pragmatically.

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

libPC Goals (4-6)

4

4. The architecture of a libPC-based workflow will be
a pipeline of connected stages, each stage being
either a data source (such as a file reader), a filter
(such as a point thinner), or data sink (such as a file
writer).

5. The libPC library will be in C++, but will also include
a C API and will have SWIG bindings for languages
like Python and C#. libPC will support multiple
platforms, specifically Windows, Linux, and Mac.

6. libPC is open source and is released under a BSD
license.

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Design

5 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Crop

filter

LAS

reader

LAS

writer

input

stream
output

stream

1. readPoints()

4. bytes

2. readPoints()

3. disk read

0. writePoints()

5. points 6. points

7. disk write
8. bytes

Pipeline Design Goals

 Aimed at:
 command line apps for data processing

 secondarily, viewing

 “Readers” and “Writers”
 Producers/Consumers, Sources/Sinks, …

 Composition of stages

 Pipeline is static
 Setup once at run time

 Then use (read from) repeatedly

6 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Key Classes (1)

7 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Key Classes (2)

8 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Groups of Classes

 Math
 Range, Vector, Bounds

 Schemata
 Dimension, DimensionLayout, Schema,

SchemaLayout, PointData

 Pipeline
 Header, Stage, Reader, Writer, Filter

 Other
 Utils, Signaller, exceptions, Color, Metadata,

SpatialReference

9 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Math Range<T>

 A minimum/maximum pair

 Features

 get/set min/max

 predicates: equality, overlaps, contains, …

 clip, grow, scale, …

10 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Math Vector<T>

 A vector of values, in the mathematical sense

 Features

 length fixed at ctor

 element accessors

 equality testing

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 11

Math Bounds<T>

 A list of Ranges

 such as an (x,y,z) bounding box

 Features:

 get/set min/max

 predicates: equality, empty, contains, overlaps, …

 grow, clip, ...

12 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Schemata Dimension

 Strongly typed data field
 such as “X Position” or “GPS Time”

 Features:
 field name enum

 XPosition, GPSTime, ReturnNumber

 data type enum
 Int8, …, Uint64, …, double

 getNumBytes, isSigned, isNumeric, …

 supports “scale/offset” uint32/float concept

13 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Schemata Schema

 A set of Dimensions

 conceptually like a database schema

 unordered; no associated physical layout

 Features:

 void addDimension(const Dimension&)

 const Dimension& getDimension(size_t index)

 size_t getDimensionIndex(Field field)

14 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Schemata DimensionLayout

 Represents a Dimension, as physically stored

 conceptually, an array of raw bytes

 the schema is overlaid/union’d over that

 Features:

 getByteOffset() // starting byte in raw bytes array

 getPosition() // index into Dimensions array

15 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Schemata SchemaLayout

 An ordered list of DimensionLayouts, to
represent the physical layout on disk

 Features

 getSchema

 getByteSize() // sum of all dimensions

 getDimensionLayout(size_t index)

16 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Header

 Basic data associated with all stages

 Number of points, bounds, …

 Features

 get/set Schema, NumPoints, Bounds, …

 get/set Metadata, SpatialReference

17 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Stage

 Stage is abstract base class for a pipeline unit
 for Readers, Writers, Filters

 Features:
 uint32_t read(PointData&)

 virtual void readBegin(uint32 numPointsToRead)

 virtual uint32 readBuffer(PointData&)

 virtual void readEnd(uint32 numPointsRead)

 seekToPoint(), getCurrentPosition(), bool atEnd()

 getHeader()

18 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

The read() protocol

 user calls Stage::read(PointData&)

 user supplies the PointData object

 this is not virtual, do not override

 read() does this for you:

 readBegin

 readBuffer()

 readEnd

 you override these in your derived classes

 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 19

Pipeline Reader

 Derives from Stage

 only difference is it supplies code to manage the
current point number for you

 Features

 adds m_currentPointNumber

20 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Filter

 Derives from Stage

 ctor takes a Stage& (the “previous” stage)

 only difference is it supplies default
implementations of read functions, etc.

 Features

 readBegin(): m_prevStage.readBegin()

…

21 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Pipeline Writer

 Derived from Filter, designed for file-based
writers

 Features:

 write(size_t numPoints)

 protected writeBegin, writeBuffer, writeEnd

 get/set ChunkSize

22 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

The write() protocol

 User calls write(numPointsToWrite)
 not virtual

 writeBegin/Buffer/End are virtual
 Derived classes provide these

 write() does this:
 writeBegin()
 numChunks = numPoints / chunkSize
 for each chunk do

 PointData data(chunkSize)
 prevStage.readBuffer(data)
 writeBuffer()

 writeEnd()

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 23

Other Utils

 Provides a dumping ground for static helper
functions

 Features:

 random()

 compare_epsilon

 iostream helpers: open/create/close file

 file helpers: rename, getSize, delete

 read/writeField<T>(uint8*)

Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0) 24

Other Signaller

 Provides callbacks for progress reporting and
requesting interrupts during long-running
pipeline operations

 class done, but not yet implemented anywhere

 Features

 virtual void setPercentComplete(double)

 virtual bool isInterruptRequested() const

25 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Other exceptions

 Provides some libPC-named exceptions for
specific error situations

 Features

 libpc_error // base class

 invalid_point_data

 invalid_format

 configuration_error

 not_yet_implemented

26 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Other Color

 Provides a simple holder for an R,G,B triplet

 Features

 get/set Red/Green/Blue

 interpolate(value, rangeMin, rangeMax)

 // provides a mapping into a color ramp

27 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Other Metadata

 Provides a holder for an arbitrary array of
bytes

 class not yet implemented

28 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Other SpatialReference

 Provides a holder for some sort of SRS
representation

 class not yet implemented

 will provide WKT, EPSG code, reprojection, etc.

 likely heavily dependent on LIBPC_HAVE_GDAL

29 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Concrete pipeline classes

 Things derived from Stage

 Readers/Writer (Drivers)
 LasReader, LasWriter

 LiblasReader, LiblasWriter

 OCI

 FauxReader, FauxWriter

 Filters
 CacheFilter, ColorFilter, DecimationFilter, CropFilter,

MosaicFilter

30 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issues

Some things are still open and need resolution

 like, this week

31 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue Capabilities

 It would be a Good Thing if some readers could advertise
certain features
 I_Support_Spatial_Indexing
 I_Don’t_Like_Doing_Random_Seeks
 …?

 Knowing this information would help a pipeline-creator be
able to omit a filter, for example

 Questions
 What is the set of capabilities offered?
 Should they be exposed from Stage?
 How should they be expressed?

 Boost-style traits?

32 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue PointData Templating

 The Dimension class uses an enum for the
data type

 It is not Dimension<T>, because then there is no
base class to allow for std::vector<Dimension>

 plus, virtual function overhead?

 But PCL does templates, sayeth Hobu

 Task: give a 5-10 min talk on PCL

 how/why it is different from libPC

 what ideas can we adopt?

33 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue Sequential or Random?

 Two worlds

 LAS (files) present a sequential list of points

 OCI (queries) present a spatially indexed set of
points

 But:

 Stage::read() is really a sequential/file model

 What can/should we do about this?

34 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue Stage Class Hierarchy

 The naming of classes is a difficult matter

 It isn't just one of your holiday games

 Reader, Writer, Filter, Producer, Consumer,
Source, Sink, …

 What is a Writer?

 The Chipper ain’t one.

 Should it really be it’s own class?

35 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue IsValid?

 It seemed like a good idea at the time

 But doesn’t seem useful at all now.

 Just one more thing for developers to need to
remember to do

 The default action goes the wrong way

36 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

Issue Miscellany

 Get rid of header class? (fits into stage)

 Boost equivalents for Range, Vector, etc.?

 (where are we actually using these?)

 Bit fields in dimensions?

 Needed for direct mapping to disk only

37 Copyright 2011 Michael P. Gerlek (CC BY-SA 2.0)

