
Tntnet users guide

Authors: Tommi Mäkitalo, Andreas Welchlin

Tntnet users guide 1

Table of contents
1 Concept... 3
2 Installing Tntnet.. 3
3 Create a simple application with Tntnet..3
4 C++-content (processing, expressions, conditional expressions)... 4
5 Query-arguments (scalar/vector, untyped/typed, default-value)...4
6 Components.. 5
7 Component-parameters... 5
8 Returning from components..6
9 Calling components (dynamic/static)..6
10 Calling components from c++...7
11 Include ecpp-files.. 7
12 Declaring subcomponents... 8
13 Passing parameters to components..8
14 Defining scoped variables... 9

14.1 Lifetime.. 9
14.2 Scope.. 10

15 Cookies..11
16 Component attributes.. 12
17 Configuration.. 12
18 Accessing configuration variables.. 13
19 Logging... 14
20 Exception handling... 14
21 Savepoints... 14
22 Binary content... 15
23 Upload...15
24 HTTP-Auth... 16
25 Using c++-classes... 16
26 Creating stand alone web applications..17
27 Some notes about multi threading...18

Tntnet users guide 2

1 Concept
Tntnet is a application server for web applications written in c++. A web application in tntnet is
written with a template-language, which embeds c++-processing-instructions in html-pages. You can
use external classes or libraries in these pages. That way programmers can concentrate on the html-
result, when creating content and put processing in c++-classes.

Applications written with the template-language called ecpp are compiled into c++-classes and linked
into a dynamically loaded shared library. This is done at compile-time – not at runtime, like other
template-systems often do. On runtime there is no compiler needed.

2 Installing Tntnet
Tntnet runs on Linux/Unix. You need a c++-compiler to compile Tntnet and also to compile your
web applications. As a prerequisite cxxtools (which is available through the Tntnet-homepage
http://www.tntnet.org) is needed. Cxxtools is a collection of useful c++-classes.

To install tntnet you have to:

1. install cxxtools

2. unpack the sources with “tar xzf tntnet-version.tar.gz”

3. cd to the source-directory “cd tntnet-version.tar.gz”

4. run “./configure”

5. run “make”

6. run “make install”

This installs: The application server and tools for

1. tntnet – the web application server

2. ecppc – the ecpp-compiler

3. ecppl – the ecpp-language-extractor for internationalization

4. ecppll – the ecpp-language-linker for internationalization

5. some shared libraries

6. tntnet-config – a script, which gives you information about the installed Tntnet and helps you
setting up a simple project.

3 Create a simple application with Tntnet
The simplest way to create a tntnet-application is to use the tntnet-config-script. Just run “tntnet-
config –project=projectname”. This creates a directory with the name of the project and:

1. projectname.ecpp – your first ecpp-file

2. Makefile – a simple makefile to build the application

3. tntnet.xml – a basic configuration file for tntnet

It used to be necessary to use a valid C++-class name as a project name, since it was used as a class
name internally. This is not true for tntnet 2.0 any more.

To build the project, change to the directory and run “make”. This runs the necessary steps to create

Tntnet users guide 3

a running application. You get a shared library projectname.so, which contains the web application.
To run it enter “tntnet” and navigate your browser to http://localhost:8000/projectname. You get a
simple Web-page.

4 C++-content (processing, expressions, conditional
expressions)

There are some simple tags, with which you can embed c++-content into the page. The most
important are processing-tags and output-tags.

With processing-tags you insert c++-code into the page, which is processed on runtime. There are 3
alternatives to insert code:

The most verbose version is <%cpp>...some c++-code...</%cpp>. A newline after </%cpp> is
ignored.

<{ starts an inline-block, which is terminated by }>. A newline after the closing tag is not ignored,
but passed to the browser.

The character '%' in the first column starts also c++-code until the end of line.

A backslash disables the interpretation of the next character.

You can embed the result of a c++-expression with <$ expr $> into the html-code. It is printed into
the page. The type of the expression needs to have a output-operator for std::ostream. The output is
automatically translated into html. Characters with special meaning in html are printed as their html
entity counterparts.

Often you need to print something depending on a condition. You can put a if-statement around it.
As a shortcut there is a special tag <? cond ? output ?>. “cond” is evaluated as a c++-expression. If
the result of this expression is true, output is printed. The output is translated like <$...$>.

Another useful tag is <# ... #>, which is just a comment. The content is skipped by the ecpp-
compiler.

In C++-mode reply.out() returns a std::ostream, which writes text to the html-page. reply.sout()
returns a std::ostream, which escapes characters with special meaning in html before writing to the
page.

5 Query-arguments (scalar/vector, untyped/typed, default-
value)

Web-applications need to interact with the user. Therefore they send a html-form to the user. After
the user submits the form, the application needs to interpret the content of the form.

To support this, ecpp has a tag: <%args>...</%args>. Between this pair you define the arguments of
the form. Each argument is terminated with ';'. Ecpp generates c++-variables of type std::string,
containing the content of the form.

You can precede arguments with a c++-type to convert the parameter automatically into this type.
This is done using the input-operator of std::istream.

Since tntnet 2.0 a parameter defined with the type bool is interpretation as true for all non empty
strings. This makes it easy to check, if a specific submit button was pressed.

Ecpp supports multiple input-tags with the same name, e.g. multiple checkboxes or select-tag with

Tntnet users guide 4

attribute multiple. By appending [] to your argument a std::vector and a typedef will be generated.
Writing name[] will be compiled to a typedef name_type and a vector name.

Single arguments can have a default value using the syntax variable = default_value;.

Examples:
<%args>
name;
street;
city = “New York”;
int age; // content of text-input is converted to int
bool button1; // true, if the submit button with name “button1” was
used for
 // submission
int sport[]; // multiple checkboxes with the same name
</%args>
<# use the vector like this: #>
% for (sport_type::const_iterator it = sport.begin(); it !=
sport.end(); ++it) {
<$ *it $>
% }

6 Components
Ecpp-pages are called components. They are identified by their name. The name is composed of the
local-name and the library-name divided with '@'. The local name is by default the filename of the
ecpp file without path and extension, but may be changed to whatever needed by passing a name
using -n to the ecpp compiler ecppc. The -n switch can be used to pass full path names as component
names.

Components, which are called by Tntnet are called top-level-components.

Components can contain internal subcomponents. The subcomponent-name is appended to the
class-name divided by a dot. Subcomponents can't be called directly from tntnet but only explicitly
using a component call.

Examples are:
mycomp@app

identifies a component with the name “mycomp” in the shared library “app.so”
mycomp.subcomp@app

identifies a subcomponent “subcomp” of “mycomp@app”
foo/bar/baz@webapp

identifies the component “foo/bar/baz” in the shared library “webapp.so”

7 Component-parameters
Every component has 3 parameters called “request”, “reply” and “qparam”.

The “request”-parameter contains information about the request, received from the browser. This
includes information about http-headers, the peer-ip, cookies or multipart-components. The
parameter is an instance of the class “tnt::httpRequest”.

The “reply”-parameter is used to build the answer to the request. The reply-object is an instance of
the class “tnt::httpReply”. It contains methods to manipulate the http-headers and an output-stream
for writing to the http-body.

“qparam” specifies the query-parameters of the component. For top-level-components it contains the

Tntnet users guide 5

query-parameters of the form. As described above, the parameters are normally accessed using the <
%args>-block.

8 Returning from components
Top-level-components return the http-response-code as an unsigned integer. If a explicit return-
statement is not specified the constant HTTP_OK is returned. Constants, which define http-
response-codes are defined in the header tnt/http.h.

As a special case the web application may return the constant DECLINED. It tells Tntnet, that the
current components is not interested in processing the reply further and Tntnet should continue in the
url mapping table (see configuration section).

Exceptions may be thrown if something goes wrong. All exceptions are catched by Tntnet and sent
with an internal server error to the client. A exception of class tnt::HttpError carry a http return code,
which is used, when this type is thrown. Additional http headers can be set also. This is useful for
generating special http responses like redirects.

But to make it even easier there are special methods for redirects and also authorization. Both are
handled using exceptions.

To make a redirect, you may call reply.redirect with the new location as a parameter:

Example:
<%cpp>
 return reply.redirect(“/new/location.html”);
</%cpp>

sends a http-redirect message to the client

Note that that the redirect method never returns but throws a tnt::HttpError. It is still defined as
returning an unsigned, so that the return statement, although syntactically correct, may be left out. It
is just for syntactic sugar.

Http-authorization is also implemented like redirects. This is explained in more detail later in this
document.

9 Calling components (dynamic/static)
Normally you don't want to write a whole web-application in one file, but you want to split it into
pieces and glue them together, just like you would write normal applications. You don't write a single
function, but split it into smaller parts and call them from a “main”-function.

This paradigm is supported by using components. Components can be called from other components.
You can write reusable components, which implement some specific parts of your page, e. g. a table
or select-box.

Components are called using <& ... >.

Basically there are several alternatives to call a component.

In the simplest and maybe most common case the component-name without library-part can be
written inside these tags.

Component-names without library-part are searched in the local subcomponent first. If not found,
the component is searched in the library of the calling component.

Example:

Tntnet users guide 6

<& somecomp >

call the component “somecomp” here. If there is a internal subcomponent, this is called,
otherwise the component is looked up in the library of the calling component.

Subcomponents, which are defined in other components, are called by appending the subcomponent-
name to the component-name separated by a dot.

Example:
<& othercomp.subcomp >

call the subcomponent “subcomp” in the component “othercomponent”.

To call a component in another library the library-part is appended to the name.

Example:
<& somecomp@somelib &>

inserts the component “somecomp” from “somelib.so” here

Component-names can be computed at runtime. To call a computed component-name, the expression
is put inside brackets.

Example:
% std::string comp = “comp”;
<& (comp + “@otherlib”) &>

The component “comp@otherlib” is called.

10 Calling components from c++
Components can be called directly from C++ using the method callComp. It takes the parameters

● component-id (of type tnt::compident or tnt::subcompident or a std::string)

● request

● reply

● query-parameter-object (of type tnt::query_params)

It returns a http-result-code. See the API-documentation for details.

Sometimes it is useful not to send the output directly to the client. With the method scallComp() it is
also possible to retrieve the output and e.g. modify it before sending. It takes the same parameters as
callComp, but no reply. Instead a temporary reply-object is created when the component is called.
The http-return-code of the called component is ignored.

Example:
std::string result = scallComp(request, qparam);

11 Include ecpp-files
Ecpp-files can be included using the tag <%include>filename</%include>. The content is included
at compile-time. It is similar to the #include-directive in C++.

Including Ecpp-files can be useful for:

● global declarations

● initialization, which is needed in multiple components

Tntnet users guide 7

● it is strongly recommended for global-scope (explained below) variables.

It should not be used for including content. Component-calling is better for that, because the content
is not duplicated.

12 Declaring subcomponents
Subcomponents are declared using <%def compname>...</%def>. The syntax of subcomponents is
the same as in top-level-components. The only exception is, that it is not possible to define other
subcomponents there.

Example:
Hello <& who >

<%def who>
World
</%def>

Prints “Hello World”.

13 Passing parameters to components
Subcomponents receive named query-parameter just like top-level-components. The parameters are
passed inside the <&...>-tags. The called component defines the parameters using an <%args>-block.

Example:
<& greeting name=”Linus” lastname=”Torvalds”>

<%def greeting>
<%args>
lastname;
name;
</%args>
Hi <$ name $> <$ lastname $>
</%def>

Prints:
Hi Linus Torvalds

Expressions are enclosed in brackets. The parameter type can also be numeric or any other type,
which is serializable and deserializable using std::ostream and std::istream.

Example:
<{
 std::string nameValue = “Linus”;
 std::string lastnameValue = “Torvalds”;
 unsigned repeatNum = 3;
}>
<& greeting name=(nameValue) lastname=(lastnameValue)
repeat=(repeatNum)>

<%def greeting>
<%args>
lastname;
name;
unsigned repeatNum = 1;
</%args>
% for (unsigned n = 0; n < repeatNum; ++n) {
Hi <$ name $> <$ lastname $>
% }
</%def>

Tntnet users guide 8

Prints:
Hi Linus Torvalds
Hi Linus Torvalds
Hi Linus Torvalds

A component can pass all its parameters to a subcomponent using its own qparam-object. In the
example below the parameters of the subcomponent greeting are forwarded to printname.

Example:
<& greeting name=”Linus” lastname=”Torvalds”>

<%def greeting>
<h1>greeting</h1>
<&printname qparam>
</%def>

<%def printname>
<%args>
lastname;
name;
</%args>
Hi <$ name $> <$ lastname $>
<%def>

Prints:
<h1>greeting</h1>
Hi Linus Torvalds

14 Defining scoped variables
Variables are defined in normal c++-syntax by specifying type and name of the variable and the
termination character ';'. These variables are instantiated automatically on first use. Constructor-
parameters are specified by adding them in brackets after the name.

14.1 Lifetime
Variables are defined in a lifetime-area. The lifetime can be session, request, application or thread.

Session-variables are valid for the current user session. Sessions are identified by cookies.

Example
<%session>
std::string currentUser;
</%session>

Request-variables are valid while the current request is processed. This is the shortest possible
lifetime.

Example
<%request>
unsigned nextId(0);
</%request>

Application-variables are valid as long as tntnet runs. They are shared between users.

Tntnet users guide 9

Example
<%application>
DbConnection myConnection(“customerdb”);
</%application>

To use the application-lifetime correctly it is necessary to know, that your application is one shared
library. Application-variables are only accessible within the same shared library.

Thread-variables are valid, as long as the thread is running. These variables are not shared between
threads, but each thread has its own copy.

Example
<%thread>
tntdb::Connection myConnection(“sqlite:customer.db”);
</%thread>

14.2 Scope
State-variables are by default valid only in the component, where they are specified. The same name
can be used in different components without conflicts.

Sometimes it us useful to widen this scope. You could e.g. define a session-variable “currentUser”,
which is accessible throughout your application. The scopes are specified by adding the scope-
attribute to the tag. Valid scopes are: component (the default), page (inside the current component
and its internal subcomponents) and global.

The application is a shared library with your components.

Examples:
<%session scope=”global”>
std::string currentUser;
</%session>
<%request scope=”page”>
int number(1);
</%request>
<%def>
<%request scope=”page”>
int number; // this references the variable “number” defined
 // outside this subcomponent
</%request>
</%def>

A special case is parameter scope. This is a technique, where we can pass almost any class we need
as a parameter to subcomponents. The scoping technique is used here.

In components we can define parameter scope variables:

Example
<%param>
tntdb::Connection myConnection(“sqlite:customer.db”);
</%param>

As with other variables, we can pass constructor parameters for default construction, when the
parameter is not set. We can not define a scope, since parameters are always local to the current
component.

When we call these components, we pass the variable as name value pairs divided by '=' in brackets

Tntnet users guide 10

just after the component name:

Example
<%cpp>
tntdb::Connection conn(dburl);
</%cpp>
<& mysubcomp(myConnection = conn) &>

Here we define a connection object and pass it as a named parameter.

Note that the object is passed by value, which means, that the object is copied once. If you want to
pass the object by reference without copying, you may pass a pointer to it. The <%param>-block
needs to specify the pointer type also.

Types are not checked at compile time. If you pass a wrong type, the behavior is undefined. You
should really be careful, what to pass.

15 Cookies
Cookies are supported by tntnet with a simple api. A cookie consists of a name, a value and
optionally attributes. To set a cookie a ecpp-application call “reply.setCookie”. The simplest form is
to call it with 2 parameters: a name and a cookie. You can pass just a std::string or a character-string
as name and value of the cookie. When the browser does its next request, you can read the cookie
with “reply.getCookie()”. This returns a cookie-object, which is directly convertible to a std::string.

Example:

To set a cookie:
<{
 reply.setCookie(“mycookie”, “myvalue”);
}>

At next request retrieve the value:
<{
 std::string v = request.getCookie(“mycookie”);
 // “v” has the value “myvalue” now
}>

To clear the cookie:
<{
 reply.clearCookie(“mycookie”);
}>

16 Component attributes
Sometimes it is useful to query attributes of a component. Attributes are just string-values, which are
defined inside a component.

Attributes are defined within a <%attr>-block. A attribute consists of a name, the character '=' and a
string terminated by ';'.

To query attributes of a component you need to fetch a reference to it with fetchComp. Pass a
component identifier to fetchComp and use the method getAttribute with a name-parameter to
retrieve the value.

Example:

Tntnet users guide 11

Define a attribute:
<%attr>
myattribute = “myvalue”;
</%attr>

To query the attribute:
<{
 std::string v =
fetchComp(“component@library”).getAttribute(“myattribute”);
 // “v” contains the value “myvalue” now.
}>

17 Configuration
Tntnet needs a configuration file to run. By default this is read from “/etc/tntnet/tntnet.xml”, but you
can pass a different file as the first parameter to tntnet.

The file is a text file and contains configuration variables. Every line starts with a variable name
followed by 0 or more parameters separated by whitespace. If a parameter contains itself whitespace,
enclose the parameter in single or double quotation marks. If you need the quotation mark in the
value, you must precede it with '\' to escape its special meaning.

Lines starting with '#' and empty lines are ignored.

There are variables, which are read by tntnet. Unknown variables are ignored. Components might
use them, so they need not be unknown if they are unknown to tntnet.

The most important variable is “MapUrl”. It tells tntnet, what to do with requests. Without this
variable tntnet answers every request with 404 – HTTP_NOT_FOUND. “MapUrl” takes at least 2
parameters: a regular expression, which is matched against the url, sent from the client and a
component name, which to call, if the expression matches. The component name might contain back
references to the regular expression. To define back references, enclose the interesting part in
brackets and reference them in the mapping using the dollar sign with a digit. The digit specifies,
which bracketed part is replaced. The brackets are numbered from 1.

Examples:
maps every html-file to the component with the same basename e.g.
/index.html index@myapp
MapUrl /(.*).html $1@myapp

maps requests, which end with .jpg to components with _jpg-suffix
e.g.
/myimg.jpg => myimg_jpg@myapp
MapUrl /(.*).jpg $1_jpg@myapp

makes every component available through http by mapping the part
before
first '/' to the applicationname (shared-library-name) and the part
after
the app
MapUrl /(.*)/(.*) $2@$1

18 Accessing configuration variables
Sometimes web applications need some configuration e.g. a database-url. Instead of hard coding it,
the application can put it into the configuration file of tntnet.

Tntnet users guide 12

Configuration variables read this way can contain only a single value.

To specify a variable, put a <%config>-block into your component. Inside define a variable my
putting the name and optionally a default value separated with '=' and terminate the definition with
';'.

Example:
<%config>
dburl = “database=mydb”;
</%config>

To set the dburl-parameter put a line:
<dburl>database=anotherdb</dburl>

into tntnet.xml.

If you don't specify a default value, the variable is set to an empty string, when not set in tntnet.xml.

19 Logging
For logging the logging library from cxxtools is used. Tntnet defines for each component a category
“component.componentname”. When you need to log something, just use one of the macros
log_fatal, log_error, log_warn, log_info or log_debug. The parameter is passed to a output stream
and you can put multiple outputitems separated by '<<'.

What is logged where is specified in “tntnet.xml”. Just look into the example tntnet.xml for some
details about configuration and look at the documentation of the cxxtools logging library.

20 Exception handling
Exceptions derived from std::exception thrown by components are catched by tntnet. They usually
generate a 500 – HTTP_INTERNAL_SERVER_ERROR, but there is a exception class
tnt::httpError, which takes a error code and a message. The code is used as a http-error-code. You
should use the tnt::HTTP_*-constants for it.

21 Savepoints
Sometimes you might want to catch exceptions generated by lower level classes or subcomponents
and generate a nicely formatted error-message. In this case you might want to close all open html-
tags before starting your error-message. This is often a almost impossible task, because you don't
know, where the exception occurred. Luckily you get help from tntnet/ecpp to solve this open-html-
tag problem: savepoints. A savepoint is a simple class, which acts like a transaction for html-output.
You instantiate a savepoint as a local variable at the start of your try-block and pass the request-
object to it. Before catch call savepoint::commit(). If the commit is not reached, because a exception
happened, the savepoint-object rolls back the output to the point, where it was instantiated.

Example:
<{
 try
 {
 tnt::Savepoint mysavepoint(reply);
}>
 <form>
 <input type=”text” name=”value” value=”<$ object.getValue() $>”>

Tntnet users guide 13

 </form>
<{
 mysavepoint.commit();
 }
 catch (const your_dbexception& e)
 {
}>
 <p class=”error”>A database-error occured: <$e.what$></p>
<{
 }
}>

In case object.getValue() throws a “your_dbexception” the form-tag is discarded from the output of
the component and a nice error-message is printed. Without the savepoint the output ends at
“value=””. This results in a badly formatted html-page.

Note, that you have to include <tnt/savepoint.h> somewhere in a <%pre>-section to get the
definition of tnt::Savepoint.

22 Binary content
Web applications may contain logos and other images or binary content. They often have static
content. For web applications to be complete, you need a way to include your images.

In Tntnet/ecpp you can generate components out of binary files, e.g. jpeg-images. The ecpp-
compiler ecppc has a special switch -b, which generates c++-classes out of these files, without
interpreting tags, which might appear in binary files. With the switch -m you can specify the
mimetype, but if you don't do that, ecppc will use your mime-database (normally /etc/mime.types).

Example:

To generate a component out of a jpeg-file logo.jpg:
ecppc -b logo.jpg

will generate a logo.h and logo.cpp, which you can compile an link into your application library.

The downside is, that for small binaries like small graphics there is a relative large overhead (I
measured a increase of the web application of about 8k per image). Therefore starting with version
1.5 of tntnet the ecpp-compiler is able to pack multiple binaries into a single component. This is
done with the switch -bb.

To address a image in a multi-image-component, you have to pass the name of your image as
pathinfo to MapUrl in the mappings section of your tntnet.xml:

<mapping>
 <url>^/images/(*.jpg)$</url>
 <target> mymultiimagecomponent@mywebapp</target>
 <pathinfo>$1</pathinfo>
</mapping>

23 Upload
Uploading files is supported by html with the input-tag with type=”file”. To use it, you have to
specify the enctype “multipart/form-data” in your form-tag.

When the form is submitted, the values comes in a special format, which supports large objects. This
is supported by tntnet and it has a simple api to access the uploaded file.

Because files might be somewhat larger than other form-content, they are not passed through the
qparam-parameter and not accessible in <%args>-blocks. You have to fetch a const reference to a

Tntnet users guide 14

tnt::multipart-object with request.getMultipart(). This object is a container of objects of type
tnt::part. You can either iterate through the parts or use the find-method to directly find the part,
which contains the uploaded file. The tnt::part-object gives you access to the content either through
constant iterators or just as a string. The iterator-interface is more efficient, because it does not need
to instantiate a temporary string. You should consider always to use the iterator-interface.

Example:

To create a form with a upload-field:
<form enctype=”multipart/form-data”>
 <input type=”file” name=”upload”>
 <input type=”submit”>
</form>

To save the uploaded file:
<{
 const tnt::multipart& mp = request.getMultipart();
 tnt::multipart::const_iterator it = mp.find("upload");
 if (it != mp.end())
 {
 std::ofstream f(“result.dat”);
 std::copy(it->getBodyBegin(), it->getBodyEnd(),
 std::ostreambuf_iterator<char>(f));
 }
}>

24 HTTP-Auth
Tntnet supports HTTP basic authentication.

For HTTP authentication the server needs to check the sent user name and password and if invalid,
send a HTTP-error-code 401 with a realm. The realm is presented to the user in a login dialog. There
are 3 methods in tntnet, to support this:

● request.getUsername() returns returns the user name sent by the client as a std::string or an
empty string, if nothing set

● request.verifyPassword(std::string password) returns true, if the password, which is sent by
the client, matches the passwort passed as a parameter. Alternatively you can use
request.getPassword(), which returns the password as sent from the client.

● reply.notAuthorized(std::string realm) throws a http-exception, which sets the proper HTTP-
header for basic authentication.

This makes using HTTP basic authentication simple:
<{
 if (request.getUsername() != "Aladdin" // user name wrong?
 || !request.verifyPassword("open sesame")) // password wrong?
 {
 reply.notAuthorized("who says what to open the sesame?");
 }
}>

25 Using c++-classes
As mentioned earlier it is desirable to separate content and processing. Content is the view, which is
created using ecpp. Processing are some c++-classes. What you need is a way to access c++-classes
from your ecpp-files. Luckily this is easy done.

Tntnet users guide 15

A c++-class consists generally of a interface in a header-file and a implementation in a
implementation-file. You can link your application with the implementation, but you need a way to
include the interface into your ecpp-file. This is done in the <%pre>-block. Contents of this block is
copied unmodified to the start of the generated header. You can place #include-directives here.

Example:
<%pre>
#include “yourclass.h” // include the class-definition here
</%pre>
<{
 yourclass c; // e.g. instantiate your class
}>
<p><$ c.getAttribute1() $></p> <# include a attribute-value into your
page #>

You might as well link your shared library to a external library and use it this way.

26 Creating stand alone web applications
Instead of compiling your application into a shared library you may create a stand alone web
application. You do not need the tntnet application server and no configuration file. All is handled in
the tntnet-library libtntnet. All you have to do in addition to creating you application itself is to create
a main-function, which instantiates a tntnet-instance, configures and runs the server. The actual
application server is represented by the class tnt::Tntnet in the include file <tnt/tntnet.h>. You need
to call tnt::Tntnet::listen (or tnt::Tntnet::sslListen) with an ip-address as a std::string and a port as an
unsigned short to tell tntnet, where to accept connections from. To tell, tntnet how to find your
application you need to add url-mappings with the method tnt::Tntnet::mapUrl. This takes 2
parameters: a url (or a regular expression) and a component name. The component name do not have
a library part as before, since the components are compiled into the binary, although it is possible to
add a library part, in which case tntnet loads the component library as before. The method returns a
reference to a new tnt::Maptarget-object, where you may add additional parameters like a custom
path info.

To run the application, call the method tnt::Tntnet::run().

Example:

Create a file main.cpp:
#include <tnt/tntnet.h>

int main(int argc, char* argv[])
{
 try
 {
 tnt::Tntnet app;

 app.listen("0.0.0.0", 8000);

 app.mapUrl("^/$", "hello")
 .setPathInfo("/hello");

 app.mapUrl("^/(.*)$", "$1");

 std::cout << "the hello application is found at
http://localhost:8080/" << std::endl;
 app.run();
 }
 catch (const std::exception& e)
 {

Tntnet users guide 16

 std::cerr << e.what() << std::endl;
 }
}

Create a web application hello.ecpp. We put a simple greeting into the application here:
<html>
 <body>
 <h1>Hello</h1>
 </body>
</html>

Compile and link the main application and the component:
g++ -c main.cpp
ecppc hello.ecpp
g++ -c hello.cpp
g++ -o hello main.o hello.o -ltntnet

Run the new binary hello and navigate your browser to http://localhost:8000/ and you will see a
greeting from your application.

27 Some notes about multi threading
When developing ecpp-components you have to bear in mind, that Tntnet is multithreaded, so your
code have to be thread-safe. Luckily Tntnet does it's best to encapsulate most of it, but if you use
your own classes this must be considered.

You can use cxxtools::Mutex and cxxtool::MutexLock to protect your objects.

Scoped variables are automatically protected. If you use a application-scoped variable the current
request locks the application-scope-object and prevents other concurrent threads accessing the
application-scope until the request is finished. Using session-scope locks the application-scope-
object first and then session-scope-object to prevent deadlocks, where one request waits for the
session-scope and the other wait for the application-scope.

Tntnet users guide 17

	1 Concept
	2 Installing Tntnet
	3 Create a simple application with Tntnet
	4 C++-content (processing, expressions, conditional expressions)
	5 Query-arguments (scalar/vector, untyped/typed, default-value)
	6 Components
	7 Component-parameters
	8 Returning from components
	9 Calling components (dynamic/static)
	10 Calling components from c++
	11 Include ecpp-files
	12 Declaring subcomponents
	13 Passing parameters to components
	14 Defining scoped variables
	14.1 Lifetime
	14.2 Scope

	15 Cookies
	16 Component attributes
	17 Configuration
	18 Accessing configuration variables
	19 Logging
	20 Exception handling
	21 Savepoints
	22 Binary content
	23 Upload
	24 HTTP-Auth
	25 Using c++-classes
	26 Creating stand alone web applications
	27 Some notes about multi threading

